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PREFACE 
 

 

Because it is shown that the singularity approach does not apply for 

wood, the theory is based on the flat elliptical crack. It then is possible to 

derive the mixed "mode I - II" - interaction equation, with the relations 

between the mode I and mode II stress intensities and energy release rates, 

based on a new orthotropic-isotropic transformation of the Airy stress 

function. It follows that failure according to the modes I and II does not 

exist. The so called mode I may occur by dissipation of shear energy only 

and the so called mode II, by dissipation of bending stress energy only. 

Nevertheless, the stresses should be high enough to satisfy the failure 

criterion, which is shown to follow the critical distortional energy criterion 

determining also the critical energy release equation.  

It also is shown that fracture softening does not exist and is not a 

material property as assumed. The derivation of the softening curve is 

given with the explanation of the measurements. It appears that the area 

under the softening curve method does not give the right fracture energy.  

Further is discussed: the derivation of the power law; the energy 

method of notched beams and of joints loaded perpendicular to the grain; 

the necessary rejection of the applied crack growth models and fictitious 

crack models and the Weibull size effect in fracture mechanics. 





 

 

 

 

 

 

 

Chapter 1 

 

 

 

INTRODUCTION 
 

 

The development of the singularity approach of fracture mechanics is 

at its dead end because it is not possible to describe real failure at the crack 

boundary and to replace the real failure criterion by general energy 

conditions and the method remains empirical. Therefore, the theoretical 

approach based on the elliptical flat crack has to be followed, leading to the 

possibility to derive and explain the empirical mixed "mode I - II" - 

interaction equation. As a result of this derivation, the right fracture energy 

and theoretical relation between mode I and II stress intensities, and energy 

release rates are obtained. Based hereupon, the derivation of the 

orthotropic mode I strain softening curve is possible. It appears that real 

softening does not exist. It is a matter of unloading of the specimen outside 

the fracture zone where the ultimate stress remains. This ultimate stress on 

the intact area of the fracture plane determines any moment the strength of 

every point of the softening curve. The area under the load-displacement 

softening curve gives the total external work on the test specimen and not 

the fracture energy. The fracture energy follows from half this area which 

is equal to the critical strain energy release rate at the initial crack 

extension. For wood this correctly is applied for mode II. For mode I 

however, as for other materials, wrongly the total area is regarded as 

fracture energy, a factor 2 too high. However, this is compensated at 
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softening by the apparent too low specific fracture energy due to a small 

crack joining mechanism when the ultimate state of the fracture plane, (the 

weakest plane for collinear crack propagation of the test-specimen) is 

reached. Post fracture behaviour thus is shown to be different from initial 

macro crack extension. The derivations lead to an adaption of the energy 

approach for fracture of square notched beams and joints loaded 

perpendicular to the grain, providing a simple design method. It further is 

shown that nearly all fracture mechanics models applied to wood, as the 

Dugdale model, the fictitious crack model and the crack growth models 

(which should follow from exact molecular deformation kinetics), are 

questionable and have to be replaced by the developed theory.  



 

 

 

 

 

 

 

Chapter 2 

 

 

 

THE BOUNDARY VALUE PROBLEM 

OF FRACTURE MECHANICS  
 

 

2.1. BASIC AIRY STRESS FUNCTION  

 

For the solution of the boundary value problem of notches in wood,  

the orthotropic Airy stress function is based on the spread out of  

the reinforcement to act as a continuum, satisfying the equilibrium, 

compatibility and strength conditions. This behaviour only is possible by 

interaction of reinforcements through the matrix. Thus also the equilibrium 

conditions and strength criterion of the matrix, as determining element, 

have to be satisfied. This only is possible to solve the Airy stress function 

for the stresses in the isotropic matrix and then to derive the total 

(orthotropic) stresses from this solution. None of the applied solutions 

(given e.g. in chapter 2.1 of [6]) satisfies this requirement. This analysis in 

total stresses is as follows: 

The stress-strain relations for the two-dimensional flat crack problem 

are: 

 

11 12x x yc c    ; 12 22y x yc c    ; 66xy xyc  .  (2.1) 
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This can be written: 

 

21/ /x x x y yE E     ; 21 / /y x y y yE E      ; 

/xy xy xyG   (2.2) 

 

The Airy function follows from:

2
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; 
2

2y
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x
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xy
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x y



 

 
,  (2.3)  

 

satisfying the equilibrium equations: 0x

x y

  
 

 
 and 0

y

x y

 
 

 
 

 (2.4) 

 

Substitutions of eq.(2.1): 

2 2

11 122 2x

U U
c c

y x


 
 

 
, etc. in the 

compatibility condition: 

2 22

2 2

y xyx

y x x y

   
 

   
,  (2.5)  

 

gives:  
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
   

   
  (2.6) 

 

This equation also can be given as:  

 

2 2 2 2

1 22 2 2 2
0U

x y x y
 

     
    

     
  (2.7) 
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where 
1 2 11 22/c c   and  1 2 66 12 222 /c c c    . Introducing 3 sets 

of polar coordinates for this case, 
ix iy re   , 1

1/
i

x iy re
  , 

2

2/
i

x iy re
  , eq.(2.7) has e.g. elementary solutions as: 

1 1cos( )mr m
, 1 1sin( )mr m

, 2 2cos( )mr m
, 2 2sin( )mr m

, leading to:  

 

 
 

      1 2 3, , , ,
2

A
r r m

K
f f f

r
      




  (2.8)  

 

in the vicinity of a notch root as stress singularity at r = 0. 

As solution, always only smaller powers than m = 0.5 are found, showing 

the (isotropic) singularity approach with the power m = 0.5 to be not a real 

solution for an orthotropic material. Thus the singularity approach only may 

apply for the stresses of the isotropic wood-matrix. Wood acts as a reinforced 

material. Lignin is isotropic and hemicellulose and cellulose are transversely 

isotropic, which means that only one stiffness factor in the main direction has 

a n-fold higher stiffness in proportion to the higher stiffness of the 

reinforcement with respect to the matrix. Thus wood material can be treated to 

contain a shear-reinforcement and a tensile reinforcement in the main direction 

and eq.(2.9) applies for equilibrium of the matrix stresses: 

 

2

2

1

x U

n y

 



; 
2

2y

U

x






; 

2

6

xy U

n x y

 
 

 
,  (2.9) 

 

Instead of using the matrix stresses and the matrix stiffness, the n-fold 

higher total stresses and n-fold higher stiffness can be used to give the same 

compatibility condition, (thus the same condition for the matrix and 

reinforcement). Inserting the total stresses in the compatibility equation, 

eq.(2.5), gives:  

 

 
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
    

   
  (2.10) 
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For the isotropic matrix is: 
1 11 22/ 1n c c   and 

 6 66 1 12 22( 1 ) / 2n c n c c    giving: 

 

4 4 4
2 2

4 2 2 4
2 ( ) 0

U U U
U

x x y y

  
     

   
  (2.11) 

 

and: 22
1

11

x

y

Ec
n

c E
  ;  12 12 22

6 21 12

22 11 66

2 2
xy

y

Gc c c
n

c c c E
 

 
        
 

 

 (2.12) 

 

This new orthotropic-isotropic transformation of the Airy stress 

function and the calculation method based on the matrix stresses is used in 

the following.  

 

 

2.2. THE ELLIPTICAL FLAT CRACK SOLUTION  

 

As shown above, the singularity approach does not apply for the 

orthotropic case and also prevents the derivation of a real failure criterion. 

Instead of such a criterion, critical values are assumed of, e.g., the strain 

energy density, or the maximal principal stress, or a non local stress 

function, all at a distance away from the crack tip, thus away from the 

fracture site. A real failure criterion only can be based on the real ultimate 

stress in the material which occurs near the crack-tip boundary. A real 

physical possible crack form is the flat elliptical crack. When “flow” 

occurs around the crack tip, the ultimate strain condition at the crack-

boundary determines the extension of this flow area. The elastic-plastic 

boundary then acts as an enlarged crack boundary with the “flow”-stress as 

ultimate elastic stress for the linear elastic fracture mechanics calculation.  
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2.2.1. The Elliptic Hole in an Infinite Region  
 

The classical way of analyzing the elliptic crack problem is to use 

complex variables and elliptic coordinates. The Airy stress function can be 

expressed in terms of two analytic functions [1], of the complex variable z 

(= x + iy) and the transformation to elliptic coordinates in Figure 2.1, 

gives:  

z = x + iy = c ∙ cosh(ξ + iη) or: x = c ∙ cosh(ξ) ∙ cos(η); y = c ∙ sinh(ξ) ∙ 

sin(η).  

For an elliptic hole, 
0  , in an infinite region with uniaxial stress p at 

infinity in a direction inclined at   to the major axis Ox of the ellipse, the 

Airy stress function U, satisfying 
2 2( ) 0U   , and satisfying the 

conditions at infinity and at the surface 
0  , showing no discontinuity 

of displacement, thus being the solution, is given in [2] and applied in [1]. 

Determining for the strength is the tangential stress t  at the crack surface 

0   due to a stress p at an angle β (of Figure 2.3) to the crack  

 

 

Figure 2.1. Elliptic hole and coordinates.  

t  = 0 0

0

(sinh(2 ) cos(2 ) exp(2 ) cos(2( ))

cosh(2 ) cos(2 )

p     

 

   


  (2.13) 
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eq.(2.13) can be extended for two mutual perpendicular principal stresses 

1p  and 
2p  (see Figure 2.3) by a simple addition leading to eq.(2.23) 

below.  

 

 

2.2.2. The Mathematical Flat Crack Solution  
 

For stresses in the wood-matrix, the results of the limit case of the 

elliptical notch with 
0  approaching zero should be comparable with the 

results of the mathematical flat crack of the singularity method. To obtain 

the singularity equations, new coordinates X, Y with the origin in the focus 

of the ellipse are necessary (see Figure 2.2). Thus:  

 

X = x - c = c(
2 – 

2 )/2, Y = y = cξη  (2.14)  

 

or in polar coordinates: r =  
0.5

2 2X Y , X = r∙cos(θ), Y = r∙sin(θ)  (2.15)  

 

and from eq.(2.14):  
0.5

2 2 2 22 / 2 /X Y c r c       (2.16)  

 

 2 / cos / 2r c   ,  2 / sin / 2r c   , 

   / tan / 2 tan      (2.17)  

 

To obtain the singularity, 
0 0   is inserted in the general solution of 

the elliptic Airy stress function, [1]. Then the tangential stress   along a 

crack boundary
0r , due to a stress p at infinity at an angle β with the notch 

is: 

           
0.5

2 2 3 2

08 / sin / 2 cos / 2 sin 2 2cos / 2 sinr cp         

 (2.18) 
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for a small value of 
0r , so that all terms containing not the factor 

0.5

0r


 are 

negligible. For the, for wood always applied, singularity method, the flat 

crack in the grain direction is supposed to propagate in that direction. Thus 

θ = 0 and eq.(2.18) becomes:  

 

   
0.5

2 28 / 2sin r cp
 (2.19) 

 

with  r
 and   r

cotg(β). Mode I failure   t
 occurs when 

  / 2 . Thus when: 

 

0(2 / ) tp r c   (2.20) 

 

 

Figure 2.2. Confocal coordinates. 

For pure shear loading, thus for superposition of 
1 p S  at β = π/4 and 

2  p S  at β = 3π/4 in eq.(18) and in the other equations of the solution 

is for crack extension θ = 0:  

 

    
0.5

2 2

0
2 / cos( / 2) 3cos ( / 2) 2rr cS 


  


     or :  
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0(2 / ) rS r c   (2.21) 

 

with now 0  r
, leading to an ultimate shear failure criterion 

because it is assumed that mode II failure or shear failure exist. Eq.(2.20) 

and (2.21) thus are in fact is maximum stress conditions for the strengths in 

the main planes. Fracture is predicted to occur when the tensile strength is 

reached perpendicular to the grain and/or when the shear strength in this 

plane is reached. Thus: 
I IcK K  and 

II IIcK K  for all stress states. This 

also is predicted for the n-fold higher orthotropic stresses and is shown by 

eq.(2.30) to be not right because failure is always by tension of the crack 

boundary. Thus also for the isotropic matrix, the singularity approach gives 

no right results. The right failure condition for combined stresses is derived 

below. The singularity equations are only applicable as limit design 

solution for matrix stresses by a chosen equilibrium system for co-axial 

macro-crack propagation as applied below for fracture of joints and beams 

with square end-notches, wherefore, as lower bound, the mode I energy 

release rate is chosen as specific fracture energy.  

 

 

2.3. DERIVATION OF THE MIXED I- II- MODE EQUATION  

 

A general failure criterion [3] follows from the limiting ultimate tensile 

stress which occurs at the crack boundary. By an extension of eq.(2.13) (by 

superposition) to 
1 1p   inclined at an angle π/2 + β to the Ox-axis and 

2 2p   inclined at an angle β, (see Figure 2.3), eq.(2.13) turns to:  
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Figure 2.3. Stresses in the notch plane Ox. 

0 0 0

0

2 sinh(2 ) 2 [(1 sinh(2 )) cot(2 ) exp(2 ) cos(2( ))cos (2 )]

cosh(2 ) cos(2 )

y xy

t

ec        


 

     



, 

 (2.22) 

 

where the stresses are given in notch coordinates with the x-axis along the 

crack. For small values of 
0  and   (flat notches), this equation becomes:  

 

 0 y xy

t 2 2
0

2   
 

 
 (2.23) 

 

The maximum (critical) value of the tangential tensile stress t , 

depending on location , is found by: td / d 0  , giving the critical 

value of : 

 

      
2

2 2 2 2
xy 0 0 y xy 02 / 2 2 / 0             , or:  

     2 2 2 2
xy 0 0 y xy t 02              (2.24) 

 

where the second equality sign is due to the substitution of eq.(2.23).  
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From the first and last term follows that:  

 

t xy     (2.25) 

 

and from the first 2 terms:  

 

 2 2
0 y y xy xy/ /           (2.26)  

 

or with eq.(2.23):  

 

2 2
0 t y y xy          (2.27)  

 

and eq.(2.27) can be written:  

 

2
y xy

2 2
0 t 0 t

1
/ 2

 
 
   

 (2.28)  

 

According to eq.(2.17) is, for small values of θ at the crack tip: 

0 02r / c  , giving in eq.(2.28):  

 

 

 

2

xyy

2
t 0

t 0

cc
1

2 r / 2 2 r

  
 
   

  (2.29) 

 

which is identical to the empirical parabolic interaction equation of Wu [4], 

eq.(2.30), measured on Balsa and on fiber reinforced plastic plates:  

 

 

 

2

2
1

III

Ic IIc

KK

K K
    (2.30) 
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The fact that 
0 / 2IC y c tK c r      is constant and therefore is 

regarded as material property, shows that failure is always by the same 

initial small cracks with tip-radius 
0r  by the uniaxial cohesion strength 

t . 

This applies for every level down to the molecular level. In [7] the 

estimation method of the relation between engineering macro stresses and 

molecular stresses at the bond breaking sites is given. For Balsa wood with 

a low density of reinforcement, nearly isotropic strength behaviour is 

found for crack extension. Thus IIc IcK 2K  according to eq.(2.28) and 

(2.30) as verified by the data of Wu of Balsa by: 
0.5

IIcK 140 psi in    and 

0.5
IcK 60 psi in   .  

Eq.(2.30) is generally applicable also when y  is a compression stress 

as follows from the measurements of Figure 2.4. When the compression is 

high enough to close the small notches ( y,cl xy 02G   ), xy  has to be 

replaced by the effective shear stress:  *
xy xy y y,cl       in 

eq.(2.28) or:  

 

 
2

*
xyy,cl

2 2
0 t 0 t

1
/ 2


 
   

,  (2.31) 

 

what is fully able to explain fracture by compression perpendicular to the 

notch plane (see Figure 2.4). In this equation is   the friction coefficient.  

For species, with denser layers than those of Balsa, a much higher 

value of IIcK  than twice the value of IcK  is measured because due to the 

reinforcement, η is smaller than the isotropic critical value of eq.(2.26). To 

read the equation in applied total orthotropic stress values, the matrix 

stress iso  has to be replaced by ort 6/ n  and the maximum slope of the 

tangent, slope δ in Figure 2.2 of the location of the failure stress, is: 

     m 0 Ic IIc 6tan / K /K 1/ 2n   (2.32) 
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For small values of η = - |η|, eq.(2.23) can be written, neglecting (η/ξ0)
2
: 

 

   

2
y xy xy

2 2 2
0 t 0 t 0 t

1 1
/ 2 / 2 / 2

  
    

        
  (2.33) 

 

where |η| is the absolute value of negative η. Thus:  

 

I II

Ic IIc

K K
1

K K
    (2.34)  

 

This is a lower bound, with:  IIc 0 m IcK / K       (2.35)  

 

and the maximal value of m   is found by measuring IcK  and IIcK , 

giving e.g. a value of about 0 m/ 7.7   , showing that the disregard of 

 
2

0/   = 0.017 with respect to 1 is right. Measurements between the 

lines eq.(2.30) and (2.34) thus indicate a strong difference between IIcK  

and IcK  of the local structure that is crossed by the propagating crack.  

To obtain the real orthotropic stresses, iso ort 6/ n    has to be 

inserted in eq.(2.28) giving: 

 

 

 

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

  
     
      

  (2.36) 

 

and it follows that: IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

  (2.37) 

 

according to eq.(2.12) is e.g. for small clear specimens:  
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Figure 2.4. Fracture strength under combined stresses [5], [6]. 

 6 21 12 xy y2n 2 2 (G /E )      = 2(2 + 0.57)/0.67 = 7.7 for 

Spruce and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-direction.  

This is in this case independent of the densities of respectively 0.37 

and 0.50 at a moisture content of 12 %. Thus, for 
1.5

IcK 265 kN/ m   is 

1.5
IIcK 7.7 265 2041 kN/ m     in the TL-direction. This agrees with 

measurements [6]. In RL-direction this factor is 3.3 to 4.4. Thus, when 

IIcK is the same as in the TL-direction, the strength in RL-direction is 

predicted to be a factor 1.7 to 2.3 higher with respect to the TL-direction. 

This however applies at high crack velocities (“elastic” failure) and is also 

dependent on the site of the notch. At common loading rates a factor lower 

than 410/260 = 1.6 is measured [6] and at lower cracking speeds, this 

strength factor is expected to be about 1 when fracture is in the “isotropic” 

middle lamella. It then thus is independent of the TL and RL-direction 

according to the local stiffness and rigidity values. To know the mean 
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influence, it is necessary to analyze fracture strength data dependent on the 

density and the elastic constants of 6n . From the rate dependency of the 

strength follows an influence of viscous and viscoelastic processes. This 

has to be analyzed by Deformation Kinetics [7].  

A general problem is further the possible early instability of the mode 

I-tests. This means that small-cracks failure outside the notch-tip region 

may be determining as e.g. in the tests of [6]. In this case constants should 

be compared with the related mode II data.  

 

 

2.4. REMARKS REGARDING CRACK PROPAGATION 

 

Because the mixed mode failure criterion shows that cracks tends to 

propagates in the direction perpendicular to greatest principal tensile stress, 

the, in literature mentioned, empirical principle, that the crack follows the 

direction that maximises 
eG , the energy release rate, is now explained to 

be the result of the failure criterion. This maximizing 
eG  principle does not 

hold and is opposite for compression. Then the crack direction tends to 

become parallel to the stress where the crack is not any more affected by 

this stress. For wood these maximizing and minimizing principles don’t 

apply, because fracture follows the weak planes along the grain and jumps 

periodically to the next growth layer in a zigzag way around the critical 

direction, determined by the Wu failure criterion  

In Figure 2.5-b, it can be seen that mixed mode crack propagation 

starts at an angle with its plane but may bend back along the fractured zone 

to its original direction where crazing and fractured zone formation starts 

again. Stage b of this crack propagation is due to small-cracks merging 

from the fractured zone which extend to the macro-crack tip. For wood 

stage b occurs in a parallel crack plane. Co-axial crack propagation in this 

case is due to the small-crack joining mechanism. If, by the high stress 

near the macro-crack tip, each two adjacent small cracks in the weak main 

plane propagate towards each other, their out of plane directions for critical 

crack extension are opposed causing stress interference which is sufficient 
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for the collinear weak plane crack propagation because of the sufficiently 

close mutual distances in the critical state.  

 

 

2.5. REMARKS REGARDING  

THE EMPIRICAL CONFIRMATION  

 

Measurements are given in Figure 2.4. The points are mean values of a 

series of 6 or 8 specimens. The theoretical line eq.(2.30) is also the mean 

value of the extended measurements of Wu on balsa plates. Only the 

Australian sawn notch data deviate from this parabolic line and lie between 

eq.(2.30) and the theoretical lower bound eq.(2.34). This is explained by 

the theory of a too high IIcK / IcK -ratio, indicating a mistake in 

manufacture. Using general mean values of the constants, the prediction 

that IIcK / IcK   21 12 xy y2 2 (G /E )      agrees with the 

measurements. However, precise local values of the constants at the 

notches are not measurable and there is an influence of the loading rate and 

cracking speed. Thus safe lower bound values have to be used in practice.  

Figure 2.4 shows that all measurements, including compression, are 

explained by the theory.  

 

 

Figure 2.5. a) Crazing at the crack tip and b) Possible crack extension along the 

fractured zone in glassy polymers.  
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Chapter 3 

 

 

 

MODE I SOFTENING BEHAVIOUR 

AND FRACTURE ENERGY  
 

 

3.1. INTRODUCTION 

 

The derivation of the softening behaviour is discussed and it is shown 

that the area under the load-displacement softening curve of e.g. Figure 

3.3, 3.4, 3.6 or 3.7, divided by the crack area, is not the fracture energy, but 

the total external work of the fracture process. The fracture energy is half 

this value and is equal to the critical strain energy release rate at the top of 

the curve. For wood this correctly is applied for mode II. For mode I a two 

times too high value is applied as done for other materials. The fracture 

energy is a function of the Griffith strength and, as the strain energy release 

rate, related to the effective width of the test specimen and not to the length 

of the fracture plane. The strain energy release rate is determined at the top 

of the top of the softening curve as start of macro-crack extension. This top 

is determined by the critical small-crack density. Proceeded small-crack 

extension also determines the softening curve and post fracture behaviour.  

The analysis is based on matrix stresses for mode I failure in the weak 

planes because of the necessary correction of the fracture energy. The 

analysis, according to the equilibrium method, then is the same as for an 

isotropic material.  
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Authors of fracture mechanics of wood call the weakest plane of 

collinear crack propagation, in the test specimen, the ligament, probably 

because a crack may extend over a part of the width of the specimen, 

causing the formation of a ligament which has to collapse, for a total crack 

extension. Because of possible misunderstanding this plane is further 

called “fracture plain”.  

 

 

3.2. COMPLIANCE AND ENERGY RELEASE RATE 

 

As most materials, wood shows near failure an apparent plastic 

behaviour and the loading curve can be approximated by equivalent 

elastic-plastic behaviour. Therefore linear elastic fracture mechanics can be 

applied based on the ultimate stress at the elastic-plastic boundary around 

the crack tip. The dissipation by microcracking, plastic deformation and 

friction within this boundary, called fracture process zone, then is regarded 

as part of the fracture energy of the macro crack extension. Also the 

equilibrium method is applicable. When a specimen is loaded until just 

before the start of softening and then unloaded and reloaded, the behaviour 

is elastic until failure making the linear elastic derivation of the softening 

curve possible based on the derivation of the compliance of the fractured 

specimen as follows:  

In Figure 3.1, a mode I, center notched test specimen is given with a 

length “l”, a width “b” and thickness “t”, loaded by a stress σ showing a 

displacement δ of the loaded boundary due to a small crack extension. The 

work done by the constant external stress σ on this specimen, during this 

crack extension is equal to  

 

σ∙b∙t∙δ = 2W (3.1) 

 

This is twice the increase of the strain energy W of the specimen. Thus 

the other half of the external work, equal to the amount W, is the fracture 

energy, used for crack extension. Thus the fracture energy is equal to half 

the applied external energy which is equal to the strain energy increase W 
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and follows, for the total crack length, from the difference of the strain 

energy of a body containing the crack and of the same body without a 

crack:  

 

2 2

2 2eff

blt blt W
E E

 
    (3.2) 

 

The fracture energy is also equal to the strain energy decrease at fixed 

grips conditions when δ = 0:  

 

c

c
W t vda




   = 

2 2 /c t E  (3.3) 

 

where the last two terms give the strain energy to open (or to close) the flat 

elliptical crack of length 2c and where “v” is the displacement of the crack 

surface in the direction of σ. From eq.(3.2) and eq.(3.3) follows that:  

 

2 2

2 2eff

blt blt
E E

 
   

2 2 /c t E   (3.4) 

 

Thus the effective Young’s modulus of the specimen of Figure 3.1, 

containing a crack of 2c, is:  

 

21 2 /
eff

E
E

c bl



  (3.5) 

 

The equilibrium condition of the critical crack length is:  

 

 2 0cW G ct
c


 


  (3.6) 
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where 
cG  is the fracture energy for the formation of the crack surface per 

unit crack area. Eq.(3.6) also can be regarded as the law of energy 

conservation of Thermodynamics. Because 
cG  = ∂W/∂(2ct), it clearly also 

is a strain energy release rate when applied to eq.(3.3).  

With W of eq.(3.2) or of eq.(3.3), eq.(3.6) becomes:  

 

2 2

2 0c

c t
G ct

c E

 
  

  
, or: 

2 2 22
1 2 0

2 2
c

blt c blt
G ct

c E bl E

    
     

   
  (3.7)  

 

giving both the Griffith strength:  

 

 

Figure 3.1. Specimen b x l and thickness t, containing a flat crack of 2c. 
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c
g

G E

c



   (3.8) 

 

This stress is related to the width b of the specimen of Figure 3.1. The 

real mean stress in the determining weakest cross section with width b – 

2c, where fracture occurs, is:  

 

1

2 ( / ) (1 2 / )

c c
r

G E G Eb

c b c b c b c b


 
   

  
  (3.9) 

 

and: 
   

2

6 / 1
0

( / ) / 1 2 /

cr
G E c b

bc b c b c b





 
  

  
,  (3.10) 

 

when c/b > 1/6, what always is the case for critical crack lengths. Thus the 

real stress 
r  increases monotonically with the increase of the crack 

length c and no softening behaviour exists at the critical site. Softening 

thus only exists outside the critical cross section and is identical to elastic 

unloading of the specimen outside the fracture zone in order to maintain 

equilibrium. Softening thus is not a material property as is assumed in the 

existing models for wood and other materials.  

 

 

3.3. THE SOFTENING CURVE  

 

Softening should be described by the damage theory of Deformation 

Kinetics [1] but a simple description of the softening behaviour as a result 

of former crack propagation alone is possible by the Griffith theory. 

Straining the specimen of Figure 3.1 to the ultimate load at which the 

initial crack will grow, gives, according to eq.(3.5): 

 

 2/ 1 2 / /g g eff gE c bl E         (3.11)  
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Substitution of 
2/c gc G E  , according to eq.(3.8), gives:  

 

2 3/ 2 /g g c gE G E bl      (3.12) 

 

This is the equation of critical equilibrium states applying along the 

softening curve (for a not limiting, sufficient long, length of the fracture 

plane of the test specimen). This curve, called Griffith locus, has a vertical 

tangent / 0g gd d   , occurring at a crack length of: 

 

/ 6cc bl  .  (3.13) 

 

Smaller cracks than 2
cc  are unstable because of the positive slope of 

the locus (according to eq.(3.16)). These small cracks, (near the macro-

crack tip) extend during the loading stage, by the high peak stresses at the 

notch of the test specimen, to a stable length and only higher crack lengths 

than 2
cc are to be expected at the highest stress before softening, giving the 

stress-strain curve of Figure 3.2 with 
c  as top value.  

 

Figure 3.2. Softening curve according to eq.(3.12) for the specimen of Figure 3.1 or 

3.5. 
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For a distribution of small cracks, b and l in eq.(3.13) are the crack 

distances and the critical crack distance for extension is about 2.2 times the 

crack length. Because, when b ≈ 2.2∙(2
cc ) and l ≈ 2.2∙(2

cc ), then bl ≈ 

19∙
2

cc  ≈ 6
2

cc  according to eq.(3.13). This critical distance also is 

predicted by Deformation Kinetics [1] and is used in § 3.6 to explain 

softening by small-crack propagation in the fracture plane.  

According to eq.(3.13), the softening line eq.(3.12) now can be given 

as:  

 

4

4
1

3

g c
g

gE

 




 
   

 

,  (3.14)  

 

where: /c c cEG c    (3.15)  

 

is the ultimate load with 
cc  according to eq.(3.13). The negative slope of 

the stable part of the Griffith locus, being the softening line, is:  

 

4 2

24
11

g

cg

cg

E E

c

c








   




  (3.16)  

Vertical yield drop occurs at the top at g c  , and the strain then is: 

( / ) (1 1/ 3)gc c E     and eq.(3.14) becomes: 

 

3

3
0.75

3

g g c

gc c g

  

  

 
    

 

,  (3.17)  

 

More in general eq.(3.14) can be written, when related to a chosen 

stress level 1g : 
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4 4

4 4

1 1 1

1 / 3

1 / 3

g g c g

g g c g

   

   


 


  (3.18)  

 

To control whether 
c  changes, eq.(3.18) can be written like:  

 

 
0.25

3

1 1 1

3

1 1 1

3 ( / ) ( / ) ( / )

1 ( / ) ( / )

g g g g g gc

g g g g g

     

    

   
 
  
 

  (3.19) 

 

with the measured values at the right hand side of the equation. When the 

occurring softening curve starts to differ from the Griffith locus, 
c  

decreases, causing a steeper decline of the curve, due to additional clear 

wood failure of the fracture plane. This small-crack joining mechanism is 

discussed in § 3.6.  

 

 

Figure 3.3. Stress - displacement curve for tension, of the specimen of Figure 3.1 or 

3.5.  
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3.4. FRACTURE ENERGY AS AREA  

UNDER THE SOFTENING CURVE  

 

The basic theory of the energy method, leading to eq.(3.1) and (3.2), 

should be confirmed by the loading curve (Figure 3.3 and 3.4). This will be 

discussed in this paragraph. 

When a test specimen is mechanical conditioned, the effective stiffness 

is obtained given e.g. by the lines OA and OC in Figure 3.3 and 3.4. In 

Figure 3.3, the area OAB, written as 
OABA , is the strain energy of the 

specimen of Figure 3.1 with a central crack (or with two side cracks 

according to Figure 3.5) with a width “b”, length “l” and thickness “t”, 

loaded to the stress  . During the quasi static crack extension from B to D 

in Figure 3.3, the constant external load   does the work on the specimen 

of: 
BD BDb t l b t            

ABDCA , where 
BD  is the strain 

increase due to the cracking and 
BD  the corresponding displacement. The 

strain energy after the crack extension is 
OCDA  and the strain energy 

increase by the crack extension thus is in Figure 3.3. 

OCDA  - 
OABA  = 

OCDA  - 
OCBA  = 

CBDA  = / 2ABDCA . Thus half of the 

external energy: / 2ABDC BDA b t      is the amount of increase of the 

strain energy due to the elongation by  , and the other half thus is the 

fracture energy which is equal to this increase of strain energy. The same 

follows at unloading at yield drop. Because every point of the softening 

curve gives the Griffith strength, which decreases with increasing crack 

length, unloading is necessary to maintain equilibrium. The fracture with 

unloading step AC in Figure 3.4 is energetic equivalent to the unloading 

steps AE and FC and the fracturing step EF at constant stress EB = FD = 

(AB + DC)/2. Thus 
ABDCA  = 

EBDFA . Identical to the first case of Figure 

3.3, the increase in strain energy due to crack extension is: 

0.5 0.5ODF OBE ODF OBF BFD EBDF ABDCA A A A A A A        , equal to half 

the work done by the external stresses during crack propagation and thus 
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also equal to the other half, the work of crack extension. It thus is shown 

that half the area under the load-displacement curve represents  

the fracture energy. For mode II, only line OACO in Figure 3.3  

is measured and OACA  is regarded to be the fracture energy. Because 

OAC BAC ABDCA A 0.5 A   , thus equal to half the area under the load 

displacement curve, the right value is measured and mode II data needs no 

correction. 

Because eq.(3.2) is based on the total crack length and the strength is a 

Griffith stress, the initial value 2c of the crack length should be accounted 

and   and 
cG  should be related to the whole crack length, including the 

initial value 2c, and thus should be related to the whole specimen width b 

and not to the reduced width of the fracture plane: b – 2c as is done now 

and leads to an energy dependent on the choice of the initial value of 2c. 

Only for the Griffith stress, the energy method of § 6 and §7 applies, based 

on the energy difference of the cracked and un-cracked state.  

 

 

Figure 3.4. Descending branch of the stress - displacement curve of Figure 3.3. 
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Figure 3.5.  Geometry of the specimens [4]. 

This has to be corrected together with the correction by a factor 2 for 

the mode I fracture energy 
cG . A third correction occurs when 

c  of 

eq.(3.14) changes. The apparent decrease of 
cG  at the end stage of the 

fracture process is due to an additional reduction of the intact area of the 

fracture plane of the specimen due to an additional clear-wood crack 

joining mechanism discussed in § 3.6.  

In [2], not ABDCA /2 is regarded for the fracture energy the totally 

different amount 
OACOA  of Figure 3.4. This is the irreversible energy of a 

loading cycle by a crack increment when the specimen is regarded as one 

giant molecule. The elastic unloading-energies outside the fracture plane 

of:
OEAA  and 

OCFA  are now additional measures of the bond reduction for 

the total molecule, representing a decrease of the apparent enthalpy and 

entropy terms of the activation energy. The triangle 
OACOA  thus represents 

the activation energy of the process [1] which is equal to the reversible 

work done on the system also represented by 
OACOA . This is the case 

because this elastic energy is given by the elastic unloading parts, outside 

the fracture plane 
OEAA  and 

OCFA together with 
OEFA , the strain energy 

increase. As discussed in [3], the measurements of [2] indicate the 

presence of a mechanosorptive process, acting in the whole specimen. 
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Thus 
OACOA  gives no separate information on the fracture process at the 

fracture plane and should not be applied as measure of the fracture energy.  

 

 

3.5. EMPIRICAL CONFIRMATION  

 

The measurements of [4] are complete by measuring the whole loading 

and softening curve and using the compact tension tests as control, being a 

control by the different loading case. 

The graphs of [4], Figure 3.6 and 3.7, are the result of tension tests on 

the specimen of Figure 3.5. 

The length of the specimen was l = 3 mm, the width and thickness: b = 

t = 20 mm and the notch length 2c = 2x5 = 10 mm with a notch width of 

0.5 mm. 

In figures 3.6 and 3.7, the measured stress-displacement is given 

together with the lines 1 and 2 according to eq.(3.17). The strain g  

follows from the displacements at the x-axis of the figures divided through 

3 mm, the measuring length and length of the specimen. Because of the 

small length of 3 mm, not the whole width b of the specimen is active. 

Assuming a possible spreading of 1.2:1, through the thickness of 1.25 mm 

above and below the side notches, the working width effb  is equal to the 

length of the fracture plane plus 2 times 1.2 x 1.25 or effb  = 10 + 3 = 13 

mm. Thus the notch lengths in Figure 3.5 should be regarded to be 1.5 mm 

instead of 5 mm. The stresses in the figures 3.6 and 3.7 of [4], are related 

to the length of the fracture plane and not to effb , according to the Griffith 

stress. Thus the given stresses have to be reduced by a factor 10/13 = 0.77.  

The standard compact tension tests of [4] did show a stress intensity 

IcK  of 330 
3/ 2kNm

. This result is independent on the chosen stiffness as 

follows from the calculation according to the series solution or according 

to the energy method. This is verified in [4] by comparing the series 

solution with a finite element compliance calculation using the isotropic 
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and the orthotropic stiffness and the quite different orthotropic stiffness of 

[5]. The value of 
IcK  = 330 

3/ 2kNm
, found in all cases, thus also should 

follow from the area under the softening curve of that compact tension test. 

When half the area of that diagram is taken to be the fracture energy, 

instead of the total area, then 
IcK , mentioned in [4], indeed is corrected to 

the right value of: 467/√2 = 330
3/ 2kNm

, giving the first empirical 

verification of the theory. 

Regarding the short double edge notched specimens of Figure 3.5, the 

measured E-modulus should be related to the effective width of 13 mm 

instead of the width of 10 mm of the fracture plane and therefore is E = 

700x10/13 = 700x0.77 = 539 MPa. The critical energy release rate then is:  

 

2 2/ 330 / 539 200c IcG K E   N/m (3.20) 

 

The measured value of 
cG  from the area under the stress-displacement 

curve is given in [4] to be 515 N/m. But, because half this area should have 

been taken and this value is wrongly related to the length of the fracture 

plane instead of on effb , the corrected value is:  

 

cG  1/2x515x0.77 = 200 N/m,  (3.21)  

 

as found above, eq.(3.20), giving again an empirical verification of the 

theory, now by the tests on the short double edge notched specimens.  

As shown before, the softening curve of Figure 3.6 has a vertical 

tangent at the top /g gd d   . The critical crack length for softening 

is: / 6cc bl   according to eq.(3.13). Thus: 

 

cc  3 313 3
10 1.4 10 1.4

6 6

effb l
 

     
 

mm  (3.22) 
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Figure 3.6. Stress - displacement of specimen T 1409 of [4].  

 

Figure 3.7. Stress - displacement of specimen T 1509 of [4]. 

This confirms the mentioned initial St. Venant crack length to be as 

small as about 1.5 mm.  

In Figure 3.6, at the Griffith maximal stress of (0.77)∙7 = 5.39 MPa, is: 

IcK c   or:  

 

IcK  = 5.39∙
31.4 10   = 0.36 

3/ 2MNm
,  (3.23) 
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thus above the mean value of 0.33 
3/ 2MNm

 for this strong specimen.  

Line 1 of Figure 3.6 gives the primary crack extension, eq.(3.17), with 

c  = (0.77)∙7 = 5.39 MPa and a displacement of about 0.03 mm, (or a 

strain of 0.03/3 = 0.01). The strength of the fracture plane of 7 to 8 MPa is 

rather high and only measured 6 times of the 117 tests. The crack does not 

propagate in a free space, but in the limited length of the fracture plane and 

this area will be overloaded. Curve 1 therefore levels off from the 

measurements at   = 0.77∙4 MPa. Thus: 

 

3

c
g

c

EG

c



   0.57∙(0.77∙7) = 0.77∙4 MPa  (3.24) 

 

Thus this happens when the crack length has become about 3 times the 

initial critical value c,0c . The remaining intact length of the fracture plane 

then is: 4.4 mm or 4.4/13 = 0.34, while the remaining intact length is 5 mm 

for small-crack pattern A (of § 3.6), or 5/13 = 0.38. Thus less fracture 

energy is required for small-crack failure and it thus is probable that 

macro-crack extension is always due to small-crack propagation toward the 

macro-crack tip. The level above 4 (to 4.6) MPa is measured in 3 of the 10 

specimens of the discussed series T1309/2309 of [4] and an example is 

given in Figure 3.7. The other specimens of this series did show lower 

strength values than 4 MPa, indicating that this strength of the fracture 

plane according to crack-pattern A was determining for softening. The 

same applies for further softening. The transition to crack pattern B and to 

pattern C is according to eq.(3.18), verified by eq.(3.19), showing that in 

Figure 3.6, 
c  is constant and equal to 

c /0.77 = 7 MPa for g /0.77 = 7 

down to 
g /0.77 = 4 MPa and then reduces gradually to 

c /0.77 = 4.5 at 

g /0.77 = 2 and further to 
c /0.77 = 3 at g /0.77 = 1 MPa. The same 

applies for Figure 3.7, 
c /0.77 = 7 MPa above 

g /0.77 = 4 MPa and then 

reduces in the same way. These results are given in Table 1. The departure 
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from the Griffith theory by the gradual decrease of 
c , below 

g /0.77 = 

4 MPa, is due to the failure of the high loaded fracture plane what is 

explained in the next paragraph. 

 

 

3.6. CRACK JOINING MECHANISM  

 

The discussed apparent decrease of the fracture energy 
cG  of the 

Griffith theory, due to reduction of intact area of the fracture plane of the 

specimen by small crack extensions at the fracture plane, can be explained, 

using the equilibrium method, by the joining of the small cracks as 

follows:.  

In [3] it is shown that the critical intermediate small crack distance of a 

fracture process in “clear” wood, and thus in the fracture plane, is about 

equal to the crack length, as given in scheme A below. In § 3.3, a crack 

distance of 2.2 times the crack length is found, what for simplicity of the 

model is rounded down here to 2, giving slightly too high stresses (see 

Table 1). For these small cracks, the critical crack length according to 

eq.(3.13) then is: 

 

2c  2c  2c  2c  2c  2c  2c   2c  2c  2c  2c  2c   2c  2c  2c.   A 

 

 6c  2c  6c   2c   6c  2c   6c.  B 

 

 14c   2c   14c  C  

 

0 0 0/ 6 2 (2 ) 2 (2 ) / (6 ) 0.92cc lb c c c          ≈ 
0c , for the 

specimen with row A. 

The distance l between the rows, above each other, is always two times 

the crack length, being the Saint-Venant distance for building up the stress 

again behind a crack to be able to form a new crack. Thus l = 2∙2c for row 

A, and l = 2∙6c = 12c in row B, and 2∙14c = 28c in row C. The crack 
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distance b in row A is b = 4c, and b = 8c in row B, and 16c in row C. Thus 

when crack pairs of row A join together, a crack length of 6c occurs, at a 

distance 8c, and so on. The critical crack length thus is for row B: 

 

2

0 0/ 6 12 8 / (6 ) 2.26cc lb c c         and is  

 

2

0 0/ 6 28 16 / (6 ) 4.88cc lb c c         for row C. 

 

The critical stress 
c  is for row A: 

 

0 0

1.04 1.04
0.92

c c
c cm

EG EG

c c
 

 
      ≈ 1.0∙0.77∙7 = 0.77∙7.0 

MPa, and for row B: 
c  =  1/ 2.26 0.67cm cm     0.67∙0.77∙7 = 

0.77∙4.6 MPa, and for row C: 
c  

=  1/ 4.88 0.45cm cm     0.45∙0.77∙7 = 0.77∙3.1 MPa. 

The determining strength of the intact part of the fracture plane is: 

2 / 2 / 4 / 2 4m u u uc b c c         ∙0.77 MPa for case A; 

2 / 8 / 4 2m u uc c      ∙0.77 MPa for case B, and 

2 /16 / 8 1m u uc c      ∙0.77 MPa for case C.  

Thus the decrease of the Griffith values 
c  and 

cG  is fully explained 

by the strength of the intact part of the fracture plane g m   as is 

verified by the measurements. As mentioned before, eq.(3.19) of 
c , of 

the softening curve gives the measurement of Figure 3.6 and 3.7 in the first 

two columns of Table 1, together with the prediction of the crack joining 

mechanism in column 5 and 6. This mechanism thus precisely explains the 

decrease of 
c  of the softening curve, which also can be approximated by 

three equations (3.18) for the 3 critical crack densities A, B and C. The 
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strength decrease by a factor 0.5 between these crack densities in column 6 

causes a decrease of the top-value 
c  of eq.(3.17) of a factor 0.657 in 

column 1 and 5. Thus: 0.657∙7 = 4.6 and 0.657∙4.6 = 3. Thus a simple 

practical approximation of the mean softening curve of all specimens of 

the series, is possible by applying eq.(3.17) twice (or three times for the 

highest values), according to line 1 and 2 in Figure 3.6 and 3.7.  

The analysis above shows that in general:  

 

1 02 2 2 2n nc c c    , giving 
1 02 6c c  and 

2 1 0 02 2 2 2 14c c c c    . 

 

The increase of the crack length is: 
1 0(2 ) ' 2 2 2 2n n nc c c c c     . 

Including the initial crack length of 2
0c , the increase of the total crack 

length is: 

 

1 0(2 ) 2 2 2 2n n nc c c c c     .  (3.25)  

 

More general for any crack distance this is: 
1(2 ) 2c c    and 

because the strength decrease is proportional to the area decrease of the 

fracture plane area of the test specimen, due to the small cracks extension 

there, the equation becomes: 

 

Table 1. Softening by macro crack propagation followed 

by fracture plane failure. 

 

eq.(3.19), data Figure 3.6 crack joining 

/ 0.77c  

eq.(3.19) 

/ 0.77g  

Chosen 

points 

1/g g   

data 

1/g g   

data 

/ 0.77c  

3 crack 

densities  

/ 0.77m  

strength  

fract.plane 

7 

7 

4.6 

3.0 

7 

4 

2 

1 

 

4/7 

2/7 

1/7 

 

7.5/4 

11.5/4 

16/4 

 

7 

4.6 

3.1 

 

A: 4 

B: 2 

C: 1 
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2 c(2c)/(2c) (G )     (3.26)  

 

giving the explanation of the decrease of c .  

Eq.(3.26) also can be expressed in the mean crack velocities  

by replacing c by c t , with c  as mean crack velocity. Thus: 

(2 ) / (2 ) ( ) / /c c ct ct c c   . Then integration of eq.(3.26) leads to: 

 

,c aG  = , ,1c aG  − γ∙ln(c ),  (3.27) 

 

This is measured in [2] and mentioned in [6] for the irreversible work 

of loading cycles.  

It is shown in [3] that 
cG is proportional to the activation energy and 

thus proportional to the driving force 
IK  with reversed sign and Eq.(3.27) 

can be written relative to a reference 
mc :  

 

,

1
1 ln( )t

t m m

c

n c




   = 

,

I

I m

K

K
 (3.28)  

 

This semi log-plot, eq.(3.28), is given, as empirical line, in many 

publications from experiments on e.g. ceramics, polymers, metals and 

glasses and is e.g. given in [6] for wood. Because the slope is small, also 

the empirical double log-plot is possible, based on the power law 

representation of § 4.4.  

The kinetics shows the same behaviour as for clear wood indicating 

that small-crack propagation is always determining. As shown in [1], two 

coupled processes act, showing the same time-temperature and time-stress 

equivalence. One process, with a very high density of sites, provides the 

sites of the second low site density process, as follows from a very long 

delay time of the second process. The notched specimen discussed here 

also shows the low concentration reaction by the strong softening 

behaviour. Probably the coupled processes are the numerous small-cracks 
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growing towards the macro notch, providing the site for the macro crack to 

grow as second low (crack-) concentration process. This failure mechanism 

thus applies for every bond breaking process at any level.  
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Chapter 4 

 

 

 

DISCUSSION OF THE FRACTURE MECHANICS 

MODELS APPLIED TO WOOD 
 

4.1. INTRODUCTION  

 

The always applied singularity approach of fracture mechanics 

contains no physical failure criterion for the ultimate state because stresses 

go to infinity at the singularity and therefore energy methods are necessary 

and additional models to constitute such failure criteria as for instance the 

J-integral to determine the strain energy release rate and the fictitious crack 

models to obtain finite ultimate stresses etc. The general applicability of 

these models will be discussed in this paragraph while criteria based on a 

critical energy are discussed in the next paragraph.  

 

 

4.2. THE FICTITIOUS CRACK MODELS  

 

The high stresses near the crack tip, are replaced by a plastic zone in 

the Dugdale model following from elastic superposition of closing stresses, 

equal to the yield stress, on the crack tip zone of a fictitious enlarged crack 

of such a length that the stress in the elastic singularity point becomes zero. 

The length of that plastic zone is pr  according to: 
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2
2 2

28 8

Ic
p

f f

K c
r

  

 

 
    

 

  (4.1) 

 

where f  is the yield stress or is regarded to be a cohesive stress.  

This leads to a maximal crack opening displacement 
c  at the crack 

tip of: 

 

8
c f pr

E
 


    = 

2

Ic

f

K

E
 = 

2

f

c

E




 (4.2) 

 

when pr  from eq.(4.1) is substituted.  

According to the theory of § 2 applies, for Mode I, at the crack tip 

boundary 
0r , at the start of flow, the condition:  

2

0 2 / fr c    according 

to eq.(2.29) for the elliptic crack tip and approximately 
2 2

0 / 2 fr c   

according to eq.(2.20) for the circular crack tip, showing a difference by a 

factor 4, depending on the form of the crack tip and thus depending on the 

value of the tangential tensile stress along the crack-tip boundary. The 

Dugdale numerical factor 
2 / 8 1.23   is between the values of 0.5 and 2 

but is too far away from the elliptic value 2 which applies generally. Also 

the theoretical elastic elliptic crack opening displacement of 

(2 ) /c c E  is far above the Dugdale value. The Dugdale model thus is a 

model according to the equilibrium method, based on a chosen, allowable 

equilibrium system, providing however a too low and thus rejectable lower 

bound with respect to the theoretical description of § 2. The same applies 

for the Hillerborg model which is not based on a constant closing stress 

f , but on closing stresses proportional to the softening curve. This of 

course is not right because there is no softening at the fracture plane. The 

real stress in the intact area is the ultimate yield stress and yield drop thus 
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is a system property indicating how much broken area with zero stress 

there is in the fracture plane (see § 3).  

For wood it is sufficient to account for apparent plasticity zones around 

the crack-tip by regarding effective crack dimensions and to regard the 

critical state at these elastic-“plastic” boundaries. 

 

 

4.3. CRACK GROWTH MODELS 

 

The acknowledged, in principle identical crack growth models for 

wood of Williams, Nielsen and Schapery, mentioned in [1], are based on 

linear viscoelasticity and on the Dugdale-Barenblatt model in order to try 

to derive the empirical crack rate equation: 

 

n

I

da
A K

dt
    (4.3) 

 

This procedure is contrary to normal and can not lead to a real solution 

because the rate equations are constitutive and follow from Deformation 

kinetics theory [2], [3], as applies for all materials 

 

 

Figure 4.1. Crack growth tests of Mindess (Figure 10 of [1]). 
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Constitutive equations only can follow from the theory and not from 

general thermodynamic considerations. In [1] is stated that Figure 4.1 

represents eq.(4.3). However, eq.(4.3) is a straight line on a double log-

plot, while Figure 4.1 gives the semi-log-plot which confirms the 

applicability of the damage equation of Deformation Kinetics [2] in the 

form: exp( )va C   , or:  

 

ln( ) ln( ) va C     (4.4)  

 

This equation is equal to eq.(3.28), discussed in § 3. More appropriate 

forms of the exact damage equations and power law forms, with the 

solutions as e.g. the yield drop in the constant strain rate test, are discussed 

in [2] and the meaning of the power law equation, eq.(4.3), is discussed 

below.  

The impossibility of the derivation of the fracture rate equation from 

the Dugdale-Barenblatt equations follows e.g. from the derivation in [6, § 

2.2] of eq.(4.5):  

 

0

n n

Ic c y pK E a r        (4.5) 

 

based on the relations: /y c E   and 
Ic c cK E  , with 

0

nE E t   and 

pr a t  . These four relations thus also can be used now to eliminate 4 

parameters, e.g. 
IcK , y  , pr  and 

0E  to obtain an equation in E, t, a  
c  

and 
c . When this is done, eq.(4.5) turns to an identity: E = E, and eq.(4.5) 

thus is not a new derived crack rate equation but an alternative writing of 

the four relations. The same follows for the other models of § 2.2 of [1] 

showing comparable parameter manipulations of many critical parameter 

values which can not be applied independently because they are part of the 

same failure condition. The models further are based on linear 

viscoelasticity which does not exist for polymers. It is shown in e.g. [2], 

page 97, and by the zero creep and relaxation tests at page 119, that a 
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spectrum of retardation or relaxation times does not exist. The 

superposition integral eq.(28) or eq.(51) of [1]:  

 

   
( )t d

t C t d
d

 
  


     (4.6) 

 

thus has no physical meaning. This also applies for the power law models 

of time and power law equation, eq.(4.3) making predictions and 

extrapolations outer the fitted range of the data impossible.  

 

 

4.4. DERIVATION OF THE POWER LAW 

 

The power law may represent any function f(x) as follows from the 

following derivation. It thus also may represent, in a limited time range, a 

real damage equation giving then a meaning of the power n of the power 

law eq.(4.3).  

Any function f(x) always can be written in a reduced variable x/x0  

 

1 0( ) ( / )f x f x x   (4.7) 

 

and can be given in the power of a function:  

 

  1/

1 0 1 0( ) ( / ) ( / )
n

n
f x f x x f x x   and expanded into the row: 

2

0 0
0 0 0

( ). .( ) ( ) '( ) ''( ) .......
1! 2!

x x x x
f x f x f x f x
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giving:  

 

   
1/ 1/ 10

1 1 1

0 0

1 . .( ) (1) (1) '(1) ..... (1)

n n

n nx x x
f x f f f f

x n x

   
      
   

 

 (4.8)  

 

when:    
1/ 1/ 1 '

1 1

1
(1) (1) (1)

n n
f f f

n


   or: 

'

1 1(1) / (1),n f f  where: 

    
 0

'

1 1 0 0 / 1
(1) / / /

x x
f f x x x x


    and 

1 0(1) ( )f f x
. 

  

Thus: 0

0

.( ) ( )

n

x
f x f x

x

 
  

 
 with 01

1 0

'( )'(1)

(1) ( )

f xf
n

f f x
    (4.9)  

 

It is seen from this derivation of the power law, using only the first 2 

expanded terms, that eq.(4.9) only applies in a limited range of x around 

0x . (Using one 
0x  is not limiting for strength problems). 

Using this approach on the damage equation: 

2 sinh( ) exp( )a C C     gives: 

 

0

0

0

. .exp( )a C a







 
   

 
   (4.10)  

 

The power 
0n   of the power law equation follows from the slope 

of the double log-plot: 
0 0ln( ) ln( ) ln( / )a a n       (4.11)  

 

Thus: 
0ln( ) / ln( / )n d a d    and n 

0  gives a meaning of n as the 

activation volume parameter 
0  of the exact equation. The values of “n” 

and the matching activation energies of the different creep and damage 

processes in wood, with the dependency on stress moisture content and 
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temperature, are given in [2]. The constancy of the initial value of the 

parameter 
0 , independent of 

0  explains the time-temperature and 

time- stress equivalence and explains, by the physical processes, why and 

when at high stresses, the in [1] mentioned value of n + 1 ≈ 60 is measured 

and at lower stresses, half this value (see [2]).  
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Chapter 5 

 

 

 

ENERGY THEORY OF FRACTURE 
 

 

5.1. INTRODUCTION 

 

The failure criterion of clear wood, i.e. wood with small defects, is the 

same as the failure criterion of notched wood, showing again that the 

small-crack extension towards the macro-crack tip is the cause of macro-

crack propagation. This small-crack failure criterion thus delivers essential 

information on macro-crack behaviour.  

 

 

5.2. CRITICAL DISTORTIONAL ENERGY  

AS FRACTURE CRITERION  

 

The failure criterion of wood consist of an orthotropic third degree 

tensor polynomial [1], which, for the same loading case, is identical to the 

Wu-mixed mode I-II-equation [2], eq.(5.3). The second degree polynomial 

part of the failure criterion is shown to be the orthotropic critical 

distortional energy principle for initial yield [3] showing the start of 

dissipation of elastic distortional energy as also confirmed by the 

orthotropic finite element calculation of [4]. By this dissipation according 
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to the incompressibility condition, the minimum energy principle is 

followed providing therefore the exact initial yield criterion as:  

 

22 2

12 2
2 1

' ' ' '

y y yx x x
x yF

XX X X YY Y Y S

     
           (5.1)  

 

where X, Y are the tension strengths and ', 'X Y  the compression strength 

in the main directions and S  is the shear strength and: 

122 1/ ' 'F XX YY  

This value of 
12F  is necessary for the elastic state which also applies at 

the starting point of initial stress redistribution and micro-cracking of the 

matrix. After further straining, 
12F  becomes zero, 

12 0F  , at final failure 

initiation. The absence of this coupling term 
12F between the normal 

stresses indicates symmetry, thus (possible random oriented) initial small-

cracks are extended during loading to their critical length in the weak 

planes, the planes of symmetry, only. Then, when these small-cracks arrive 

at their critical crack-density (discussed in § 3.6) and start to extend 

further, a type of hardening occurs because the reinforcement prevents 

crack extension in the matrix in the most critical direction. Then, due  

to hardening, 
12F  and all third degree coupling terms of the tensor 

polynomial become proportional to the hardening state constants [3] and 

therefore also dependent on the stability of the test and equipment. For the 

mixed I-II-loading of the crack plane by tension 
2  and shear 

6 , the 

polynomial failure criterion reduces to:  

 

2 2 2

2 2 22 2 66 6 266 2 63 1F F F F         or:  

6 2 2

2

(1 / ) (1 / ')

1 / '

Y Y

S c Y

  



  



 (5.2) 
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with: c 
2

2663 'F Y S   0.9 to 0.99, depending on the stability of the test. 

When c approaches  

c   1, Eq.(5.2) becomes Eq.(5.3), the in § 2.3 theoretically explained 

Wu-equation, with a cut off by the line: 
2 Y  .  

 

2

6 2 1
S Y

  
  

 
 or: 

2

2
1II I

IIc Ic

K K

K K
   (5.3) 

 

This equation contains no hardening constants and thus is the critical 

distortional energy equation for this case. Wrongly for wood and other 

orthotropic materials, Eq.(5.2) is generally replaced in literature by: 

 

2 2

2

2 2
1

Y S

 
  , written as: 

2 2

2 2
1I II

Ic IIc

K K

K K
  ,  (5.4)  

 

which surely is not a summation of energies, as is stated, but is identical to 

Eq.(5.1) when it wrongly is assumed that the compression and tension 

strength are equal for wood and orthotropic materials.  

 

 

5.3. REVISION OF THE CRITICAL ENERGY  

RELEASE RATE EQUATION 

 

Based on the failure criterion of § 5.2, adaption of the energy release 

equation is necessary. 

The Griffith strength equation, eq.(3.8) of § 3: 
2 /y c yG E c  can be 

extended by superposition to: 

 

2 2 /y xy c yG E c     (5.5) 
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This only is right, when 
cG  is not constant but depends on /y xy  , 

because else, for y  = 0, Eq.(5.5) predicts a too low shear strength. This 

already was noticed by Griffith. The fracture toughness calculation of § 2.3 

shows a two times higher shear strength of the isotropic matrix than 

according to the energy method. This was explained by supposing that 

there is enough energy for failure, but that the shear stresses are too low for 

failure. Only the energy of high stresses is involved in failure. This 

however means that fG  also has to satisfy the failure condition eq.(5.3).  

In orthotropic stresses, Eq.( 5.5) is: 
2 2 2

6/ /y xy f yn G E c     and 

when 0xy  , is  

 

fG  = 
IcG  and 

Ic y IcK E G . When 0y   is: 

2 2 2

6 64xy IIc y Ic yc n G E n G E    ,  

 

because  

 

62IIc IcK n K  (eq.(2.37)). Thus: 
6 62IIc y IIc y IcK n E G n E G   or:  

4IIc IcG G   (5.6)  

 

The failure condition Eq.(5.3) can be written in fracture energies: 

 

 

 

2

2
1

III

Ic IIc

KK

K K
   

I II

IIcIc

G G

GG
   

 1f f

IIcIc

G G

GG

   
   (5.7) 

 

where:  1f I II f fG G G G G          (5.8) 
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Thus: 
 

2
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f I

f II

G K

G K







 or: 

2 2

2 2

1 1

1 1
II xy

I y

K
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  (5.9)  

 

and   depends on the stress combination /xy y   in the region of the 

macro notch-tip and thus not on the stresses of the fracture energy as 

generally postulated by the I and II failure modes. This stress combination 

also may follow from a chosen stress field according to the equilibrium 

method of limit state design as is applied in § 6 and 7.  

With eq.(5.6): / 4IIc IcG G  , eq.(5.7) becomes:  

 

2 24 / (1 ) / (1 )f Ic IIcG G G       (5.10) 

 

where   acts as an empirical constant explaining the differences in fracture 

energies depending on the notch structure and shear slenderness of the 

beam by the different occurring /xy y  -values according to Eq.(5.9).  

Applications of the theory with the total critical fracture energy fG  

are given in § 6 and 7. 
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Chapter 6 

 

 

 

ENERGY APPROACH  

FOR FRACTURE OF NOTCHED BEAMS  
 

 

6.1. INTRODUCTION  

 

The theory of total fracture energy, discussed in § 5, was initially 

developed to obtain simple general design rules for beams with square end-

notches and edge joints, loaded perpendicular to the grain design rules of 

square notches and joints for the Dutch Building Code and later, as 

correction of the method of [1], published in [2] with the extensions for 

high beams. Horizontal splitting in short, high beams, loaded close to the 

support, causes no failure because the remaining beam is strong enough to 

carry the load and vertical transverse crack propagation is necessary for 

total failure. This is not discussed here because it is shown that also the 

standard strength calculation is sufficient. In [3] and [4] the theory is 

applied to explain behaviour, leading to the final proposal for design rules 

for the Eurocode, given at § 7.5, and to an always reliable simple design 

method.  

In the following, the theoretical basis and implementation of the new 

developments of the energy approach for fracture of notched beams are 

given and it is shown that the predictions of the theory are verified by the 

measurements. The presentation of more data can be found in [2].  
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Figure 6.1. Notched beam. 

 

6.2. ENERGY BALANCE  

 

When crack-extension occurs over the length Δx, along the grain, then 

the work done by the constant load V is V∙Δδ, where Δδ is the increase of 

the deformation at V. This work is twice the increase of strain energy of the 

cantilever part: V∙ Δδ/2. Thus half of the external work done at cracking is 

used for crack formation being thus equal to the other half, the strain 

energy increase.  

 

 

Figure 6.2. Equivalent crack problem according to superposition. 
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Thus in general, when the change of the potential energy ΔW = V∙Δδ/2 

becomes equal to the energy of crack formation, crack propagation occurs. 

The energy of crack formation is: 
c cG b x G bh    , where 

cG  is the 

crack formation energy per unit crack area. Thus crack propagation occurs 

at V = fV  when: 
2/ 2 ( / ) / 2        cW V V V G bh , thus when:  

 

2

( / )
c

f

G bh
V

V








  (6.1) 

 

and only the increase of the compliance δ/V has to be known.  

The deflection δ can be calculated from elementary beam theory as 

chosen allowable equilibrium system as a lower bound of the strength. This 

is close to real behaviour because, according to the theory of elasticity, the 

deflection can be calculated from elementary beam theory while the 

difference from this stress distribution is an internal equilibrium system 

causing no deflection of the beam and also the shear distribution can be 

taken to be parabolic according to this elementary theory, as only 

component of this polynomial expansion, contributing to the deflection.  

According to the Figure 6.2, the notch can be seen as a horizontal split, 

case: a = a’, and case “a” can be split in the superposition of case “b” and 

“c”, where b = b’.  

Case “c” now is the real crack problem by the reversed equal forces 

that can be analyzed for instance by a finite element method, etc. From the 

principle of energy balance it is also possible to find the critical value of 

case “c” by calculating the differences in strain energies or the differences 

in deflections δ by V between case: b’ and case a’, thus differences in 

deformation of the cracked and un-cracked part to find Δ(δ/V) for eq.(6.1).  

Deformations due to the normal stresses N of case c, are of lower order 

in a virtual work equation and should not be accounted. It then follows that 

case c of Figure 6.2 is equal to a mode I test and 
c IcG G . When the beam 

is turned upside down, or when V is reversed in direction, then 'M  and 
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'V  are reversed closing the crack and fracture only is possible by shear, 

identical to the mode II test and then 
c IIcG G  

The change of δ by the increase of shear deformation is, with 

eh h  :  

 

1.2
v

h h
V

G b h bh

 




 
   

 
  (6.2)  

 

The change of δ by the increase of the deflection is:  
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  (6.3)  

 

Thus: 
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3

( / ) 1.2 1 12 1
1 1

V

Gb Eb

 

  

    
        

    
  (6.4) 

 

The critical value of V thus is according to eq.(6.1):  

 

2

2

3

1.67

1 1 1 10
1 1

c
f

G hb
V

G E



 


   

      
   

  (6.5) 

 

or: 

 

 3 4 2 4

/

0.6( ) 6 /

f c
V GG h

b h G E



     


  
  (6.6) 

 

For small values of β eq.(6.6) becomes:  
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2

/

0.6 ( )

f c
V GG h

b h  


 
  (6.7) 

 

For high values of β, eq.(6.6) becomes:  

 

4

/

6( )

f c
V EG h

b h



   



  (6.8) 

 

 

6.3. EXPERIMENTAL VERIFICATION  

 

A verification of the prediction of the theory for high values β, 

eq.(6.8), when the work by shear is negligible, is given by Table 6.1 of an 

investigation of Murphy, mentioned in [1], regarding a notch starting at β = 

2.5 and proceeding to β = 5.5. Further also beams were tested with a slit at 

a distance: β = 2.5. Because the exact eq.(6.6) gives a less than 1 % higher 

value, eq.(6.8) applies. (
cGG = 11.1 resp. 10.9 

1.5N/ mm ) and: 
cEG = 

48.8 
1.5N/ mm . This value is used in table 6.1 for comparison of eq.(6.8) 

with the measurements, showing an excellent agreement between theory 

and measurement. For all specimens was: α = 0.7; η = L/h = 10 (L is 

distance field loading to support) and b = 79 mm. The other  

values are given in table 6.1. The fracture energy is: 

cG      
2

48.8 / 14000 0.17N /mm 170N /m , which agrees with 

values of the critical strain energy release rate. The value of 
IcK  is about: 

0.17 700 10.9IcK     
1.5N/mm = 345 

1.5kN/m , as to be expected 

by the high density of Douglas fir.  
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Table 6.1. Strength of clear laminated Douglas fir with notches  

in the tensile zone in MPa. 

 

h mm   number V/αbh tests eq.(6.8) 

305 2.5 2 0.46 0.47 

305 5.5 2 0.24 0.22 

457 2.5 2 0.38 0.38 

457 5.5 1 0.16 0.17 

 

In table 6.2, data are given of Spruce for low values of β, to verify the 

then predicted theoretical behaviour according to eq.(6.7) with energy 

dissipation by shear stresses only. It appears for these data that the 

difference between the mean values according to eq.(6.7) and eq.(6.6) are 

10 % and thus not negligible small and also the values of eq.(6.6) are given 

to obtain a possible correction factor. It follows from table 6.2 for Spruce 

that: 
cGG 

1.56.8N / mm  or: 

cG   26.8 / 500 0.092N/mm 92N/m . 

 

Table 6.2. Strength of notched beams, Spruce, Mohler and Mistler. 

 

h 

mm 

    η/α b 

mm 

n 

 

V/bαh 

N/mm
2
 

var. 

coef. 

% 

fGG  

eq.(6.6) eq.(6.7) 

N/mm
1.5

 

120 .917 .25 3.4 32 6 2.36 11 (5.8) (5.5) 

.833 3.8 27 1.93 15 6,4 6.1 

.75 4.2 43 1.68 19 6.6 6.2 

.667 4.7 14 1.52 18 6.5 6.1 

.583 5.4 10 1.5 18 6.8 6.3 

.5 6.3 49 1.59 18 7.4 6.7 

.333 9.5 10 1.48 16 7.0 5.9 

mean 6.8 6.2 

Testing time more than 1 min., m.c. 11%, ρ = 510 kg/m
3
. 
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For Spruce is 
IcK  ≈ 6.3 to 7.6 according to [5], depending on  

the grain orientation and then also applies: 
2E G  and: 

2 6.8Ic cK E G  
1.5N / mm .  

Although the fracture energy is shear-stress energy, failure still is by 

mode I (of Figure 6.2) and not by the shear mode II, as is supposed by 

other models. Thus the total work contributes to failure, whether it is 

bending stress energy (Table 6.1) or shear stress energy (Table 6.2) and 

1   (eq.(5.9) for failure of this type of notch by the high tensile stress 

perpendicular to the grain at the notch root.  

In [2] more data are given regarding the strength of square notches. 

The size influence, or the influence of the height of the notched beam on 

the strength, is tested on beams with notch parameters   = 0.5 and 0.75; 

  is 0.5 and heights h 50, 100 and 200 mm with b = 45 mm at moisture 

contents of 12, 15 and 18%. The strength fGG  appeared to be 

independent of the beam depth as to be expected for macro crack extension 

along an always sufficient long fracture plane. 

The value of fGG  at moisture contents of 12, 15 and 18% was 

resp.: 6.7; 7.7 and 8.0 
1.5Nmm .  

Higher values of fGG  of Spruce, given in [2], are possible for loads 

close to the support. Then horizontal splitting does not cause failure 

because the remaining beam is strong enough to carry the total load and the 

derivation is given by regarding vertical crack propagation necessary for 

total failure (bending failure of the remaining beam). For this mode I,  

mGG   57.5 N/
1.5mm  = 1818 kN/

1.5m  (comparable with 1890 

kN/
1.5m  of [5])  

For still higher values of  , above α = 0.875, compression with shear 

failure is determining by direct force transmission to the support.  

In [3] is shown that Foschi’s finite element prediction and graphs, 

given in [5] can be explained and are identical to eq.(6.8).  
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Chapter 7 

 

 

 

ENERGY APPROACH FOR FRACTURE  

OF JOINTS LOADED PERPENDICULAR  

TO THE GRAIN 
 

 

7.1. INTRODUCTION 

 

As for square end-notches, the analysis can be based on the 

compliance change by an infinitesimal crack increase. Because 

measurements show no difference in strength and fracture energy between 

joints at the end of a beam (Series G6.1 and G6.2 of [1]) and joints in the 

middle of the beam (the other G-series), and also the calculated clamping 

effect difference by crack extension is of lower order, this clamping effect 

of the fractured beam at the joint in the middle of a beam, has to be 

disregarded as necessity of the virtual energy equation of fracture disregard 

lower order terms. This is according to the limit state analysis which is 

based on the virtual work equations. For end-joints, the split off part is 

unloaded and there is no normal force and no vierendeel-girder action at all 

and the situation and fracture equations are the same as for the notched 

beams of § 6. For joints in the middle of the beam, splitting goes in the 

direction of lower moments and is stable until the total splitting of the 

beam. The analysis in [1] and [2] shows this stable crack propagation 
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because the terms in the denominator become smaller at crack length 

increase, until the shear term remains, giving the maximal value of V 

according to eq.(7.6), the same value as for end-joints.  

It thus is not true, as is stated in the CIB/W18-discussion of [1], that 

the analysis and theory are incorrect when virtual lower order terms are 

omitted in the analysis and that splitting of joints analysis is not 

comparable to splitting of notched beam analysis. The proof that this 

neglecting of the vierendeel-action is right is given (outer the empirical 

proof by the measurements) by the complete analysis for this case in [3], 

where also the influence on the strain of normal stresses is accounted, 

leading to eq.(7.5) containing the negligible clamping effect term in the 

denominator, (based on the assumption that not total splitting of the beam 

is the end state).  

 

 

7.2. ENERGY BALANCE  

 

For a simple calculation of the compliance difference of the cracked 

and un-cracked state, (maintaining the clamping action in the end state) 

half a beam is regarded, as given in Figure 7.1, loaded by a constant load 

V. At the start of cracking, the deflection at V increases with δ (see Figure 

7.2) and the work done by the force V is: 2ΔW = V∙δ, which is twice the 

increase of the strain energy (ΔW = V∙δ/2) of the beam and therefore the 

amount ΔW is used to increase the strain energy and the other equal 

amount of ΔW is used as fracture energy. Because δ is the difference of the 

cracked and "un-cracked" state, only the deformation of the cracked part 

βh minus the deformation of that same part βh in the un-cracked state, need 

to be calculated, because the deformation of all other parts of the beam by 

load V are the same in cracked and un-cracked state. As discussed at 6.2, 

the deflection δ can be calculated from elementary beam theory of 

elasticity. It thus is not right to regard an additional deformation r
, as is 

done, due to the non-linearity and clamping effect of the cantilevers βh, 

formed by the crack. The clamping effect change is of lower order at an 
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infinitesimal crack extension. If this effect would have an influence, there 

should be a difference in notched beams in the splitting force for a real 

square notch of length βh and a vertical saw cut at a distance βh from the 

support, because that slit has at least twice that clamping effect (see Figure 

6.2).  

For a connection at the middle of a beam the following applies after 

splitting (see Figure 7.1). The part above the crack (stiffness 

 
3 3

2 1 /12 I b h ) carries a moment 3M  and normal force N and the 

part below the crack (stiffness 3 3

1 /12I b h ) carries a moment 1M , 

normal force N and a shear force V. and at the end of the crack a negative 

moment of about: 
2 1 M M . Further is 

2 1  M M V , thus 
1 / 2M V . 

The deformation of beam 2 of the cracked part βh is equal to the un-

cracked deformation un
 of that part and the deformation of beam 1 is un

 

plus the crack opening   (see Figure 7.1 and 7.2) and δ is: 

 

22 3 3 3 3

1

3

1 1 1 1 1

1 2 1 1 1 1

2 3 2 3 4 12

    
 


           

MV V V V V

EI EI EI EI EI bE

  (7.1)  

 

The deflection difference of the cracked and un-cracked state is total:  

 

1.2  




 
   

 

h h
V

G b h bh
+ 

3

3





V

bE
  (7.2) 

 

The condition of equilibrium at crack length β is:  

 

 / 2 / 0      cV G b h  or:    2/ / / 2     cV V G bh  or:  
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Figure 7.1. Beam with crack by the dowel force of a joint and bending moment. 

c
f

2G bh
V

( / V)


 



  (7.3) 

 

where 
cG  is the fracture energy. It follows from eq.(7.2) that:  

 

Figure 7.2. Statics of half the crack. 
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  2

3

/ 1.2 1 3
1

 

  

  
   

  

V

bG Eb
  (7.4) 

 

and eq.(7.3) becomes: 

 

  2

/

0.6 1 1.5 / ( )


   


 

c
f

GG h
V b h

G E
  (7.5) 

 

giving, for the always relatively small values of β, the previous found 

eq.(6.7): 

 

/

0.6 (1 )  


  

f c
V GG h

b h
  (7.6)  

 

which thus also applies for notched beams and for end-joints and verifies 

the lower bound of the strength, predicted by the theory of [1]. This also 

indicates that only work by shear stresses contributes to fracture. The fit of 

the equation with vierendeel action, eq.(7.5), to the data is not better than 

the fit by eq.(7.6) what shows that the term 1.5β
2
G/αE is small with respect 

to 0.6(1 – α)α and also that β is about proportional to α and is of the same 

order. Comparison of eq.(7.5) and eq.(6.6) shows that the higher value of 

the end joint is determining for this definition of the strength and the same 

design rules as for notches are possible for joints when not the joint but 

splitting is determining. However design should be based on “flow “ of the 

joint before splitting of the beam and the interaction of joint failure and 

beam splitting has to be regarded as follows.  

When crack extension starts of a cantilever beam loaded by a constant 

load V, giving a deflection increase of δ at V, then the applied energy to the 

beam is V∙δ. The energy balance equation then is:  

 

/ 2   cV V E   (7.7)  
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where / 2V  is the increase of the elastic energy and 
cE  the energy of 

crack extension.  

 

Thus: / 2cE V   (7.8)  

 

Thus the energy of crack extension is equal to the increase of elastic 

energy. 

Eq.(7.8) also can be written with de incremental deflection δ = du: 

 

2

cE V d(u/V)/2 fG bh d ( ) or: 

 

2

( / ) / 


 

fG bh
V

u V
  (7.9)  

 

where fG is the fracture energy per unit crack surface and “bhd(β)” the 

crack surface increase with “b” as width and “h” the height of the beam 

with a crack length l = βh. 

When the load on the cantilever beam, mentioned above, is prevented 

to move, the energy balance, eq.(7.7) becomes:  

 

0  e cE E , or: / 2   c eE E V   (7.10)  

 

for the same crack length and now the energy of crack extension is equal to 

the decrease of elastic energy in the beam. 

When the joint at load V becomes determining and just start to flow at 

1  when splitting of the beam occurs, then eq.(7.7) becomes: 

 

1 1=( ) / 2 ( ) cV V V E          (7.11)  
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where again 
1 / 2V  is the increase of the elastic energy and 

1( ) V  

the plastic energy of the flow of the joint. From eq.(7.11) then follows: 

 

1 / 2cE V   (7.12)  

 

the same as eq.(7.8), despite of the plastic deformation.  

For connections, plastic deformation in the last case will not yet occur 

because it is coupled with crack extension. When the dowels of the joint 

are pressed into the wood, the crack opening increases and thus also crack 

extension. It can be seen in eq.(7.11), that when flow occurs, the total 

applied energy Vδ is used for plastic deformation. This is a comparable 

situation as given by eq.(7.10), and the at the plastic flow coupled crack 

extension will cause a decrease of the elastic energy. eq.(7.11) thus for 

joints is:  

 

1 2 1V = (V ) / 2 ( )          sV E   (7.13)  

 

where 
2 / 2V  is the decrease of the elastic energy by the part of crack 

extension due to the plastic deformation. From eq.(7.13) now follows:  

 

1 2( ) / 2  sE V   (7.14)  

 

and eq.(7.9) becomes: 

 

1 2

2

(( ) / ) / 


  

fG bh
V

u u V
  (7.15)  

 

From eq.(7.12) and (7.14) follows that 
1 1 2( )   c cV V , where 

1c cV  is the amount when the connection is as strong as the beam. Thus: 
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1 2

1

 




 c

c

V

V
  c n c

n

n V n

nV n
  (7.16) 

 

where 
nV  is the ultimate load of the dowel at flow and n the number of 

dowels.  

Substitution of eq.(7.16) into eq.(7.15) gives: 

 

1

2

( / ) / 
 

 

f

c c

G bh n
V

u V n
  (7.17) 

 

what is equal to / cn n  times the strength according to eq.(7.9) for 

1 cu u , thus / cn n  times the splitting strength of the beam as is applied 

in [1].  

According to eq.(7.13), the theoretical lower bound of V according to 

eq.(7.17) occurs at 
1 2  , Thus when / cn n  = 1/2. In [1], the empirical 

value of 0.5 to 0.4 is mentioned according to the data giving:  

 

1 1

2 2
0,45 0.67

( / ) / ( / ) /

f f

c c

G bh G bh
V

u V u V 
   

   
  (7.18)  

 

This requirement for “flow” of the joint at failure:
fGG = 0,67∙18 = 

12 
1.5Nmm

 is included in the Eurocode (see § 7.5). 

The condition 
1 2   means that there is sufficient elastic energy for 

total unloading and thus full crack extension with sufficient external work 

for plastic dissipation by the joints. According to eq.(7.13) is for that case:  

 

1cE V   (7.19) 
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7.3. EXPERIMENTAL VERIFICATION  

 

The value of 
cE  of eq.(7.19) is 12 

1.5Nmm
 as follows from the test 

data given in [1]. In [1], first test-results of 50 beams of [4] with one or two 

dowel connections are given of beams of 40x100 and 40x200 mm with 

  values between 0.1 and 0.7 and dowel diameters of 10 and 24 mm. In 

all cases 0.5 cn n   and not splitting but flow of the connection is 

determining for failure reaching the in [1] theoretical explained high 

embedding strength by hardening as to be expected for the always 

sufficient high spreading possibility of one- (or two-) dowel joints. The 

same applies for the 1 and 2 dowel joints of the Karlsruhe investigation. 

Splitting then is not the cause of failure but the result of post-failure 

behaviour due to continued extension by the testing device.  

Table 7.1 of [1] shows that for series B, splitting of the beam is 

determining. Whether there are 10, 15, 20 or 25 nails per shear plane, the 

strength is the same: 
cGG 16.7 

1.5Nmm
. This is confirmed by the too 

low value of the embedding strength of the nails 
cf  of series B. A more 

precise value of 
cGG  follows from the mean value of 17.1 

1.5Nmm
 of 

series B2 to  B4. Then the value for 10 nails of series B1 is a factor 

15.5/17.1 = 0.9 lower.  

Thus / 10 / 0.9c cn n n  . Thus 12cn   for series B. This means 

that the number of 5 nails of series A is below / 2 6cn   and the  

measured apparent value of 
cGG  is the minimal value of 

0.5 / 17.1 0.5 12.1c c cGG n n    1.5Nmm . The same value should 

have been measured for series C because the number of 3 nails also is 

below / 2 6cn  . Measured is 11.7 1.5Nmm . For the 53 beams of all the 

series G of [1] this is 12.0
1.5Nmm

. As mentioned a mean value of 12 is 

now the Eurocode requirement.  
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Table 7.1.TU-Karlsruhe test data No.1: Joint with nails. 

 

Type No  d rows Col a=h ar fc GGc =L /h F/bh 

Test tests  m N   [1] eq.(7)   

  mm   mm mm MPa N/mm1.5  MPa 

 beam: b.h=40.180 mm        

A1 8 3.8 5 1 28 76 3.7 13.9 2.37 7.37 

A2 4 3.8 5 1 47 76 4.3 13.3 2.37 5.82 

A3 3 3.8 5 1 66 76 4.2 11.3 2.37 4.52 

A4 3 3.8 5 1 85 76 4.2 10.2 2.37 3.94 

A5 3 3.8 5 1 104 76 5.5 11.7 2.37 4.54 

 beam: b.h =40.180mm   mean 4.4 12.1   

B1 4 3.8 5 2 47 76 3.5 15.5 2.37 6.77 

B2 3 3.8 5 3 66 76 3.8 17.9 2.37 7.15 

B3 3 3.8 5 4 85 76 3.3 16.1 2.37 6.21 

B4 3 3.8 5 5 104 76 3.6 17.2 2.37 6.69 

 beam: b.h = 40.120 m  mean 3.6 16.7   

C1 3 3.8 2 1 28 76 6.8 15.3 2.18 8.51 

C2 3 3.8 2 1 28 57 6.2 13.0 2.26 7.21 

C3 3 3.8 2 1 28 38 5.6 10.9 2.34 6.07 

C4 3 3.8 2 1 28 19 5.7 10.3 2.42 5.73 

C5 3 3.8 1 1 28 0 6.9 11.2 2.50 6.21 

C6 3 8 1 1 28 0 5.8 9.7 2.50 5.40 

 beam: b.h=40.180 mm  mean 6.2 11.7   

L8 1 8 1 1 28 0 5.0 8.8 2.50 4.64 

 

The value of 0.5 cn , depends on dimensioning of the joint and thus on 

amount of hardening by the spreading effect of embedding strength. Thin, 

long nails at larger distances in thick wood members are less dangerous for 

splitting and show a high value of 
cn . For series G, with b = 100 mm, 

/ 2cn  is at least below 8 nails. For series V of [1] with dowels of 16 mm, 

8.6cn  . For design, 
cn  need not to be known. But dimensioning of the 

joint to meet also the requirement of cGG = 12 
1.5Nmm

, will lead to 

the number of nails of / 2cn . This dimensioning also determines the value 
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of
cf . The value of 

cf = 4.4 MPa of series A is lower than 
cf = 6.2 MPa of 

series C, in proportion to the square root of the spreading lengths per nail 

as expected from theory [1].  
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7.5. DESIGN EQUATION OF THE EUROCODE 5 

 

As discussed in [1], the shear capacity is (for he  0.7 h) 

 

10.3 10.3
(1 ) ( )

u e

e

V h

h hb h




 

 
 

 

where 10.3 (2 / 3) ( / 0.6)cGG  is the characteristic value.  

This can be replaced by the tangent line through this curve at point  = 

0.5 giving: 

1.7u
c

V
GG

b h
 = 1.7∙(2/3)∙12 = 13.6 

1.5Nmm
.  





 

 

 

 

 

 

 

Chapter 8 

 

 

 

CONCLUSIONS 
 

 

Important conclusions are that 1) the orthotropic solution and 

singularity method don’t apply for wood but the solution for the isotropic 

matrix s determining; that 2) softening is elastic unloading outside the 

fracture zone and thus is not a material property; that 3) failure is always 

by tension and is not coupled to the postulated failure modes I and II; that 

4) the softening curve is determined by a crack joining mechanism and all 

points of this curve are fully explained by the ultimate state of the intact 

part of the fracture plane; that 5) the fracture energy as area under the 

softening curve should be based on half this area for mode I as is already 

applied for mode II. The stress should be Griffith stress related to the 

whole width of the specimen and not to the intact part of the fracture plane 

and the initial crack length (2c) should be summed up to the total crack 

length to make the energy method possible based on the energy difference 

of the cracked and the fully un-cracked state of the specimen.  

Fracture mechanics of wood and comparable materials appears to be 

determined by small-crack propagation towards the macro-crack tip. This 

follows e.g. from the same failure criterion for “clear” wood and for 

macro-crack extension is the same. The presence of small-crack 

propagation is noticeable by the Weibull volume effect of timber strength. 

There is no influence on macro-crack propagation of the geometry of 
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notches and sharpness of the macro crack-tip in wood (against orthotropic 

theory). Thus orthotropic fracture mechanics is not determining. This also 

follows from the nearly same fracture toughness and energy release rate for 

wide and slit notches and the minor influence of rounding the notch (also 

against orthotropic theory). Determining thus is the influence of small 

cracks in the isotropic matrix for the total behaviour, having the same 

influence at the tip of wide as well as slit notches.  

The orthotropic boundary value limit state solution does not apply for 

fracture mechanics of reinforced materials because of lack of equilibrium 

of the matrix stresses. The equilibrium method of Limit design thus has to 

be based on the matrix stresses.  

The always, for all materials, applied singularity approach appears to 

be not valid for orthotropic materials and only may apply for the isotropic 

matrix. The method, based on collinear crack propagation, does not predict 

the right strength. Instead therefore, the complete solution of the Airy 

stress function, based on the flat elliptical crack, has to be applied.  

The empirical mixed I-II-mode fracture criterion is explained by the 

elliptical small-crack approach, providing the exact theoretical basis of this 

criterion. This criterion is the consequence of the ultimate uniaxial 

cohesive strength along the micro-crack boundary. The theory therefore 

also explains the relations between IcK  and IIcK  in TL- and in RL-

direction and the relations between the related fracture energies. This leads 

to one overall apparent critical energy release rate which may be different 

for different structures but is independent of the stress combinations of the 

dissipated strain energy of fracture. Whether, for a square end-notch, work 

is done by only bending or by only shear deformation, failure is in mode I 

and not in mode II in the last case as predicted by the other models.  

The orthotropic approach, based on equilibrium of the homogenized 

reinforcement in wood gives incorrect results, because the matrix is not in 

equilibrium and does not satisfy the strength criterion. It therefore  

is necessary to start with equilibrium, compatibility and strength 

requirements of the isotropic matrix stresses providing a simple 

orthotropic-isotropic transformation of the Airy-stress function. for the 

total solution.  



Conclusions 75 

Based on this approach is: Ic y IcK E G  , IIc 6 y IIcK n E G  and 

IIc IcG 4G   

 

2 2
f Ic IIcG 4G /(1 ) G /(1 )       with :  2 2

xy y1/ 1 /       

 

and: 

 

   6 21 12 xy yn 2 G /E      

 

The theoretical value of IIc IcG 4G  is verified by reported 

measurements where ratio 3.5 is found (R
2
 = 0.64) instead of 4. This lower 

measured ratio is due to the applied too high value of IcG  which should be 

corrected to be equal to the energy release rate. 

It is shown, that the models applied to wood, (as necessary 

replacement of the infinite fracture stresses of the singularity approach), as 

e.g. the Dugdale model, fictitious crack model and crack growth models 

are incorrect and have to be replaced by the general theory.  

A derivation of the softening curve is given based on small-crack 

extensions. The softening curve follows at the start the stable part of the 

Griffith locus. This means that every point of the softening curve gives the 

Griffith strength. This curve depends on only one parameter, the maximal 

critical Griffith stress c  and therefore depends on the critical crack 

density. This applies until half way of unloading. The fracture energy is 

down to this point equal to the critical energy release rate. After that, the 

strength of the fracture plane of the test specimen becomes determining 

due to a crack joining mechanism, changing the crack density and intact 

area of the fracture plane and therefore causing a decrease of c  and an 

apparent decrease of the fracture energy. The strength at every point of the 

softening curve is fully determined by the strength of the intact area of the 

fracture plane. Softening thus is a matter of elastic unloading of the 
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specimen outside the fracture zone and softening thus is not a material 

property. 

The fracture energy for mode I is stated in literature to be equal to the 

area under the softening curve divided through the crack length. This is not 

right. It is half this area when the fracture plane is not limiting. This is 

applied and accepted for mode II in wood.  

It also is stated that the area of a loading cycle at softening, divided by 

the area of the crack increment, is equal to the fracture energy. This also is 

not right. It is shown that this energy is proportional to the apparent 

activation energy of all processes in the whole test specimen.  

A revision is necessary of all published mode I data of the fracture 

energy, based on the area of the softening curve, because of the dissimilar 

behaviour of post fracture behaviour giving no right prediction of the 

fracture energy. Therefore this area method should not be used anymore. A 

right simple description follows from the derived apparent energy release 

rate adapted to the measured strength data. 

The theory shows that the Eurocode design rules for beams with 

rectangular end notches or joints should be corrected to the right real 

compliance difference and the right measured uniaxial stiffness.  

The verification of the derived theory by measurements shows the 

excellent agreement. The method provides an exact solution and is shown 

to be generally applicable also for joints and provides as simple design 

equations as wanted.  



 

 

 

 

 

 

 

Chapter 9 

 

 

 

APPENDIX: WEIBULL SIZE EFFECT  

IN FRACTURE MECHANICS  

OF WIDE ANGLE NOTCHED TIMBER BEAMS 
 

Because the Weibull size effect is normally not a fracture mechanics 

subject, this influence is discussed in a separate appendix to the main 

theory.  

 

 

9.1. SUMMARY 

 

A new explanation is given of the strength of wide angled notched 

timber beams by accounting for a Weibull type size effect in fracture 

mechanics. The strength of wood is described by the probability of critical 

initial small crack lengths. This effect is opposed by toughening by the 

probability of having a less critical crack tip curvature. The toughening 

effect dominates at the different wide angle notched beams showing 

different high stressed areas by the different angles and thus different 

influences of the volume effect. This is shown to explain the other power 

of the depth in Eq.(9.18) and (9.19) than the sharp notch value of 0.5 of 

Eq.(9.17). It further is shown to explain why for very small dimensions, 

also for sharp notches, the volume effect applies. The explanation by the 
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Weibull effect implicates that the strength depends on small crack 

extension, in the neighbourhood of the macro crack tip. This initial crack 

population can be different for full scale members indicating that 

correction of the applied data is necessary and that additional toughness 

tests have to be done on full scale (or semi full scale) test specimens.  

 

 

9.2. INTRODUCTION 

 

Fracture mechanics of wood is normally restricted to fracture along the 

grain. It is e.g. not possible to have shear crack propagation across the 

grain. Also the mixed mode crack follows the weak material axes and only 

may periodically jump to the next growth layer at a weak spot. Thus the 

direction of the collinear crack propagation is known. As shown in § 2, the 

singularity approach gives no right results in this case and the analysis has 

to be based on linear elastic flat elliptic crack extension by the maximal 

stress at the elastic-plastic boundary around the small crack. This response 

at randomized stress raisers near weak spots is indicated by the volume 

effect of the strength. There also is no clear influence on macro-crack 

propagation of the crack geometry and notch form and sharpness of the 

macro crack tip, showing orthotropic fracture mechanics to be not decisive. 

This also is indicated by the not orthotropic, but isotropic relation between 

mode I stress intensity and strain energy release rate of wood. The 

determining small crack behaviour also follows from the failure criterion 

of common un-notched wood being of the same form as the theoretical 

explained fracture mechanics criterion for notched wood.  

The matrix is determining for initial failure and not the reinforcement. 

The failure criterion of unnotched wood shows no coupling term between 

the reinforcements in the main directions confirming the orthotropic 

strength schematization to be not determining. The determining small 

crack dimension follows from the Weibull size effect. The here treated 

strength of wide angle notched beams is an example of a determining size 

effect in fracture mechanics.  
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Figure 9.1. Wide angle notched beam element. 

The strength analysis of [1] of wide angle notched beams, given in 

Figure 9.1, was based on the orthotropic Airy stress function. However, 

despite of the dominant mode I loading, none of the solutions of this 

function are close enough to the measurements to be a real solution. The 

reason of this is the absence of the Weibull size effect in the equations as 

will be shown in this paragraph. The in [1] chosen solutions of the 

biharmonic Airy stress function are:  

 

1 1cos( )nr n
, 1 1sin( )nr n

, 2 2cos( )nr n
, 2 2cos( )nr n

 resulting 

in:  
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   (9.1) 

 

where 
AK  is the stress intensity factor and “r” the distance from the notch 

root. In the direction of crack extension, along the grain ( 0 ), the 

tensile strength perpendicular to the grain   is determining for fracture. 

The boundary conditions for the different notch angles a/g provide 

different values of the power “n” and thus different slopes of the lines in 

Figure 9.2. However, it is theoretically not possible that these lines 

intersect trough one point, as is measured, because the different boundary 

conditions by the different notch angles cannot be satisfied at the same 

time and the chosen mathematical solution of [1] thus has to be rejected. 
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The fact that these lines cross one point, at the elementary volume, proves 

the existence of a volume effect of the strength. This is introduced in the 

fracture mechanics energy method calculation in § 9.4. In § 9.3, the 

derivation of the size effect is given to show the equivalent derivation of 

the toughening size effect in § 9.4.  

 

 

9.3. SIZE EFFECT 

 

Due to the initial small crack distribution, clear wood shows a brittle 

like failure for tension and shear. According to the Weibull model, the 

probability of rupture, due to propagation of the biggest crack in an 

elementary volume 
0V  is equal to 

01 ( )P  , when 
0P  is the probability of 

survival. For a volume V containing 
0/N V V  elementary volumes the 

failure probability is:      0 0 0 01 1 1 1 1
N

sP P P P P        . Thus 

   0 0ln 1 ln 1sP N P NP      because 
0P  << 1. Thus the probability 

of survival of a specimen with volume V, loaded by a constant tensile 

stress  , as in the standard tensile test, is given by: 

 

 

Figure 9.2. Measured bending strengths for different sizes and notch angles. 
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where    0 0/
k

P     is chosen, because the power law of   may 

represent any function of   around a chosen stress value as e.g. the mean 

failure stress (see § 4.4 for the proof). For a stress distribution, Eq.(9.2) 

becomes: 
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This specimen has an equal probability of survival as the standard test 

specimen Eq.(9.2), when the exponents are equal thus when:  
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For a constant stress ( , , )x y z  , the specimen strength thus will 

decrease with its volume V according to: 

 

1/k

s
s

V

V
 

 
  

 
 (9.5) 

 

where 
s  is the mean strength of the specimen with volume sV . The 

power k depends on the coefficient of variation /s   according to: 
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From the row-expansion of the Gamma-functions it can be seen that: 

 

1.2
s s

k f
 

 
   

 
  (9.7) 

 

where f( /s  ) is normally a little varying function.  

Thus: 1/ / (1.2 )k s     

For a stress distribution, Eq.(9.4) becomes:  
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where m  is the determining maximal stress in volume V and 

 /
k

ch mV dV   , a characteristic volume. Eq.(9.8) thus becomes:  
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  (9.9) 

 

This applies for the strength of common unnotched specimens.  

This strength also is determined by fracture mechanics. The tensile 

strength is e.g.: 

 

Ic
t

K
f

c
  or ,

s
t t s

c
f f

c
 .  (9.10)  

 

where 
IcK  is the stress intensity factor. 

Substitution of the strength according to Eq.(9.5) (or Eq.(9.9)) leads to: 
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 (9.11) 

 

This equation gives the probability of a critical Griffith crack length c 

leading to fracture. Also in this case, a crack toughening mechanism is 

thinkable, discussed in § 9.4, leading to the opposite volume effect with a 

negative value of the exponent 1/k. This can not be distinguished and the 

resultant value of 1/k then is given by Eq.(9.11). Because for every type of 

wood material the value of c is specific, determining the specimen 

strength, Eq.(9.9), as shortcut of Eq.(9.11), is applied in practice.  

According to Eq.(2.29), the stress intensity factor of Eq.(9.10) is: 

/ 2Ic tK r  where 
t  is the equivalent cohesion strength at the crack 

tip boundary and r  is the radius of the elastic-plastic boundary of the crack 

tip zone. A constant stress intensity factor 
IcK means that t r  is 

constant and only the crack length c is a variable as for brittle fracture. 

Toughening means an increase of the plastic zone, thus of r of the small 

cracks, within the characteristic volume. This influence is visible at the 

different wide angle notches as discussed in § 9.4.  

Because fracture across the grain is tough and the lengths of applied 

beams don’t vary much, the size effect of the length dimension is small and 

the volume effect for bending is replaced by a height effect of the beam 

only. It is postulated that this absence of a width effect is explained by  

the constant widths of 2 'b of 2 planes of weakness adjacent to the  

sides of the beam due to the cutting action at manufacturing. Then: 

   
1/ 1/

/ 2 ' / 2 '
k k

s ch sV V b h l b hl   
1/

/
k

sh h , becomes the height factor 

of the Codes. This width effect is applied in § 9.4.  
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9.4. SIZE EFFECT OF WIDE NOTCHED BEAMS 

 

The analysis of the strength of the notched beams can be based on the 

energy method where the critical fracture energy is found from the 

difference of the work done by the constant force due to its displacement 

by a small crack extension minus the increase of the strain energy due to 

this displacement. According to this approach of [3] and § 6, the bending 

stress m  at the end of the notched beam at l D  in Figure 9.1 is:  

 

 
2
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6 6 /

( )

f c
m

V D EG D

b D




  
 


   (9.12) 

 

when the notch is not close to the support. In [1] is chosen:   = d/D = 0.5, 

what means that d = a. Further the length is l = 2D when g/a = 0 and 2, 

while l = 4D for g/a = 4 in Figure 9.1. E is the modulus of elasticity and 

cG  the critical energy release rate, given in [3]. Eq.(9.12) applies for the 

rectangular notch (g = 0). For wide notch angles a more complicated 

expression applies because of the changing stiffness over length l  of the 

crack extension. However, for given dimensions and loading, the basic 

form of the equation is the same as Eq.(9.12), thus: 

 

/m cB EG D    (9.13)  

 

where B is a constant depending on dimensions and notch angle. 

According to §2 and [3] is, as mentioned, c c tEG K r  , where 

t  is the equivalent cohesion strength and the crack tip radius r  is the 

only parameter of the notch strength. The volume effect depending on the 

stress follows from § 9.3 and the analysis thus can be based on the flow 

stress and the characteristic volume around the notch tip, For the 

probability of a critical value of r, of the small initial cracks within the 
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high stressed characteristic volume around the notch tip, the probabilistic 

reasoning of § 9.3 can be repeated as follows. The probability of having a 

critical flaw curvature 1/ r  in an elementary volume 
0V  is equal to 

01 (1/ )P r , when 
0P  is the survival probability. For a volume V 

containing 
0/N V V  elementary volumes the survival probability is in 

the same way: 

 

 0

0 0

( ) exp exp

k

s

V r
P V NP
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  (9.14) 

 

where    0 01/ /
k

P r r r , because the power law may represent any 

function in 1/r. At “flow”, this probability is not a function of  , but of 

the flow strain, given by a critical r  

Equal exponents for the same probability of failure in two cases now 

lead to:  
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and Eq.(9.13) becomes: 
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For the notch angle of 90°, (g = 0 in Figure 9.1), or smaller angles, the 

high stressed elastic region around the crack tip is, as the fracture process 

zone itself, independent of the beam dimensions. Thus in characteristic 

dimensions 0' ' 'V b l h V   and Eq.(9.16) becomes:  
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0.5

0
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m m

D

D
 


 

  
 

. (9.17) 

 

independent of a volume effect. For the widest notch angle of 166° (g/a = 

4), there is a small stress gradient over a large area and V is proportional to 

the beam dimensions. Thus: V (:) b∙d∙l = γD∙δD∙βD = γ∙β·δ
3D  and: V/ 0V  = 

(γδβ
3D /γδβ

3
0D ) =  

3

0/D D . Thus is, with 1/k = 0.18:  
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For the angle of 153.40°, (g/a = 2), the high stressed region dimensions 

becomes proportional to the dimensions b and D and: 

 

V/ 0V  = (bdl)/( 0 0b d l ) = (
2D /

2
0D ) = (

2D /
2
0D ) and with1/k = 

0.18 is: 
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D D

D D
  

  
   

    
   

 (9.19) 

 

It follows from Figure 9.2, that the values of exponents of – 0.5, - 0.32, 

and -0.23 are the same as measured. The coefficient of variation of the 

tests must have been: 1.2∙0.18 = 0.22, as common for wood. According to 

the incomplete solution of [1], discussed in the Introduction, these values 

of the exponents were respectively - 0.437, - 0.363 and - 0.327, thus too far 

away from the measured values.  

The explanation of no volume effect of sharp notches due to the 

invariant characteristic volume, independent of the beam dimensions, 

explains also why for very small beams, also for sharp notches, there is a 

volume effect because then the beam dimensions are restrictive for the 
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characteristic volume. As shown above, the exponent may change from – 

0.5 to -0.23 with decrease of the beam dimensions. This is measured and 

e.g. discussed at pg. 85 of [2] and it now is shown that toughening (and not 

nonlinear behaviour) is the explanation of this volume effect. 

The lines in Figure 9.2 intersect at the elementary Weibull volume 

wherefore the depth dimension is 
0.610 4 mm with a material bending 

strength of 147 MPa. 

 

 

9.5. CONCLUSIONS REGARDING THE SIZE EFFECT 

 

A explanation is given of the strength of wide angled notched beams of 

[1] by introducing the Weibull type size effect in fracture mechanics based 

on the critical curvature of the initial small cracks near the high stressed 

notch tip zone.  

For sharp notch angles, up to 90°, there is no volume effect due to the 

constant volume of the characteristic volume, containing the fracture 

process zone. For wider notch angles, the peak stresses and stress gradients 

become lower and are divided over a larger region and influenced by the 

dimensions and thus a volume effect correction applies.  

The intersect of the three lines in Figure 9.2, with different values of 

“n” of Eq.(9.1), due to different boundary conditions by the different notch 

angles, can not be explained by the boundary value analysis. This intersect 

only can be explained to be due to the volume effect of the strength 

indicating failure by small crack extension within the high stressed region 

at the notch tip. 

Using the Energy approach and the volume effect correction according 

to Eq.(9.16), the measured values of the powers of the depths (or the slopes 

of the lines of Figure 9.2) are precisely explained.  
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